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2 MATTHEW KAHLE

1. (Wednesday, August 22)

This course will be about various types of random graphs. In today’s class, we

partly motivate this study with a discussion of “the probabilistic method”. This

method is essential in many areas of mathematics now, but Ramsey theory is an

important classical one.

The function R(s, t) is defined to be the smallest number N such that for every

coloring of the edges of the complete graph Kn with red and blue, there is either

a red Ks or a blue Kt subgraph. For example R(3, 3) = 6. For large s and t

there is little hope for an exact formula for R(s, t), but we might at least hope to

understand the asymptotics.

An easy induction argument shows that R(s, t) ≤ R(s − 1, t) + R(s, t − 1). To-

gether with the fact that R(s, 1) = R(1, t) = 1, this gives by induction that

R(s, t) ≤
(
s+ t

s

)
.

Exercise 1.1 (easy). Show that this implies that R(s, s) ≤ 4s. Better yet, show

that R(s, s) = O (4s/
√
s).

Exercise 1.2 (open). Improve the base of the exponent 4, or else show that it can

not be improved. E.g. prove or disprove that R(s, s) = O (3.999s).

The best upper bound I know of is due to David Conlon [4].

Theorem 1.3 (Conlon, 2009). There exists a contain c such that

R(s+ 1, s+ 1) ≤ s−c log s/ log log s

(
2s

s

)
.

For lower bounds we apply the probabilistic method. Taking a random coloring

of the edges gives the following bound.

Theorem 1.4 (Erdős). If (
n

k

)
21−(k2) < 1

then R(k, k) > n.

The proof is a simple union bound.

Exercise 1.5. Show as a corollary that

R(s, s) ≥
√

2
s

The proof is easy but the technique is still powerful. In fact the following is wide

open.

Exercise 1.6 (open). Give an explicit description of any sequence of graphs which

gives an exponential lower bound on R(s, s).
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This can be rephrased as follows.

Exercise 1.7 (open). Give an explicit infinite sequence of graphs {Gn}∞n=1, so that

Gn has n vertices and such that the largest clique and the largest independent set

in Gn are both of order O(log n).

It seems strange that although asymptotically almost every graph according to

the measureG(n, 1/2) has this property, 1 it is hard to exhibit any explicit examples.

This is sometimes referred to as the problem of finding hay in a haystack.

Exercise 1.8 (open). Improve the base of the exponent
√

2, or else show that it

can not be improved. E.g. prove or disprove that

R(s, s) = Ω (1.415s) .

The main source for this lecture was Chapter 1 of Alon and Spencer’s book [1].

1In the next lecture we will define the binomial random graph G(n, p).
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2. (Friday, August 24)

Definition 2.1. For a natural number n and 0 ≤ p ≤ 1, an Erdős-Rényi graph

G(n, p) is defined to be a graph on n vertices where each pair of vertices is joined

by an edge with probability p, with the edges chosen jointly and independently.

Note that if G is any particular graph on n vertices, then the probability of

obtaining G is peG(1− p)(
n
2)−eG .

Definition 2.2. For 0 ≤ m ≤
(
n
2

)
, the Erdős-Rényi graph G(n,m) is a graph on

n vertices with m edges, chosen among all
((n2)
m

)
such graphs uniformly.

Each definition has its advantages and disadvantages; one particular advantage of

G(n, p) is that all edges are chosen independently, so local phenomena are modeled

more easily than in G(n,m).

Very roughly, G(n,m) resembles G(n, p) with p = m/
(
n
2

)
. Conversely, G(n, p)

resembles G(n,m) with m = p ·
(
n
2

)
.

We will use the following notation extensively. Let f(n), g(n) be sequences of

positive real numbers.

• f = O(g) iff there exists a constant M > 0 such that f(n) ≤Mg(n) for all

sufficiently large n; we also write g = Ω(f).

• f = o(g) iff limn→∞ f(n)/g(n) = 0; we also write f � g, g � f , or

g = ω(f).

• f = Θ(g) iff f = O(g) and g = O(f); we also write f � g.

• f ∼ g iff limn→∞ f(n)/g(n) = 1.

If Q is any graph property (e.g. connected, contains a K3, etc.), we say G(n, p)

has property Q a.a.s. (asymptotically almost surely) or w.h.p. (with high proba-

bility) if Pr[G(n, p) ∈ Q] → 1 as n → ∞. For example, we can say the following

about connectedness:

(1) If p� logn
n , then G(n, p) is connected a.a.s.

(2) If p� logn
n , then G(n, p) is disconnected a.a.s.

(3) If p� n−2, then G(n, p) has no edges a.a.s.

In the above statements, we have suppressed the implicit variation of p with n;

that is, we might more properly write G(n, p(n)). As another example, we will prove

the following proposition as a special case of a more general theorem on subgraph

containment later:

Proposition 2.3. Let Q be the set of graphs containing K4 as a subgraph. Then

Pr[G(n, p) ∈ Q]→


0 if p� n−2/3

f(c) if p = cn−2/3

1 if p� n−2/3,
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where f(c) is a function independent of p.

We are often interested in graph properties Q that are monotone in the following

sense: let G and H be graphs on n vertices such that G ⊆ H. Then Q is said to

be monotone increasing if G ∈ Q implies H ∈ Q (e.g. connected, contains Km,

contains a cycle). Similarly, Q is monotone decreasing if H ∈ Q implies G ∈ Q
(e.g. k-colorable, maximum degree at most 5).

Definition 2.4. Let Q be a monotone increasing graph property and p̂ a sequence

of probabilities. Then p̂ is a threshold for Q if

Pr[G(n, p) ∈ Q]→

{
0 if p� p̂

1 if p� p̂,

Theorem 2.5. Every nontrivial monotone graph property has a threshold.

In the context of the above statement, a property is “trivial” if it holds for

every graph or no graph, and nontrivial otherwise. Now, fix a nontrivial monotone

increasing property Q. To prove the theorem, the following lemma is useful:

Lemma 2.6. If p1 ≤ p2, then Pr[G(n, p1) ∈ Q] ≤ Pr[G(n, p2) ∈ Q].

Proof. The proof uses the useful notion of “2-round sprinkling”: if G(n, p) and

G(n, q) are chosen independently on [n], then their union is G(n, p + q − pq) by

inclusion-exclusion. Setting p = p1 and q = p2−p1
1−p1 , view G(n, p2) as the union of

G(n, p) and G(n, q). Then G(n, p1) ⊆ G(n, p2), and the conclusion follows since Q
is increasing. �

Definition 2.7. Let a ∈ (0, 1). Then p(a) ∈ (0, 1) is defined to be the number such

that Pr[G(n, p(a)) ∈ Q] = a.

Note that since Pr[G(n, p) ∈ Q] is simply a (potentially very complicated) poly-

nomial in p, p(a) exists and is unique, and indeed is continuous and increasing as

a function of a. Using this definition, we have the following fact, to be proved next

time:

Proposition 2.8. Let p̂ be a sequence of probabilities. Then p̂ is a threshold for Q
if and only if p(a, n) � p̂(n) for all a ∈ (0, 1).
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3. (Monday, August 27)

We began by rehashing some definitions from last time.

Definition 3.1. We recall the symbols defining how sequences p(n), q(n) of strictly

positive real numbers relate.

• f = O(g) if and only if ∃c > 0, N ∈ N such that n > N implies f(n) ≤
cg(n).

• p(n)� q(n) if and only if p(n) = o(q(n)) if and only if lim
n→∞

p(n)

q(n)
= 0.

• p(n)� q(n) if and only if p(n) = ω(q(n)) if and only if lim
n→∞

p(n)

q(n)
=∞.

• p(n) � q(n) if and only if p(n) = Θ(q(n)) if and only if p(n) = O(q(n))

and q(n) = O(p(n)); i.e., there are constants 0 < c < C, N ∈ N such that

n > N implies cq(n) ≤ p(n) ≤ Cq(n).

Definition 3.2. If Q is a non-trivial, monotone, increasing graph property, then

p̂ = p̂(n) is said to be a threshold for Q if, as n→∞,

Pr[G(n, p(n)) ∈ Q]→

{
1, p� p̂

0, p� p̂

Definition 3.3. p(a) = p(a;n) is defined to be the unique number q in (0, 1) such

that Pr[G(n, q) ∈ Q] = a. (The well-defined-ness of this number more or less follows

from the intermediate value theorem, and the probablility a polynomial in p: For

fixed n, p 7→ Pr[G(n, p) ∈ Q is continuous and strictly increasing.)

3.1. Every monotone graph property has a threshold. We now wish to show

that every increasing (nontrivial) graph property has a threshold. To start, we now

clarify the proof of the fact given at the end of class on Friday, Aug. 24th, 2012.2

Lemma 3.4. p̂ is a threshold if and only if p̂ � p(a) for any fixed a, 0 < a < 1.

Proof. (“only if”): Assume p̂ is a threshold. If 0 < a < 1 but p̂ 6� p(a), then

there exists a subsequence n1, n2, . . . along which
p(a)

p̂
→ 0 or

p(a)

p̂
→∞.

In the first case, as k → ∞,
p(a;nk)

p̂(nk)
→ 0. Extend the subsequence p(a;nk) to

any full sequence q(n) such that q(nk) = p(a;nk) and that
q(n)

p̂(n)
→ 0 as n → ∞.3

Therefore, by the definition of a threshold,

Pr[G(n, q(n)) ∈ Q]→ 0 as n→∞,

2There was no real error in the proof from last time; only one observation fixes the proof.
3For example, for any n 6= nk for some k, just define q(n) = 2−np̂(n).
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and hence, since subsequential limits equal the full limits,

Pr[G(nk, p(a;nk) ∈ Q]→ 0 as n→∞.

Yet by definition of p(a),

Pr[G(nk, p(a;nk) ∈ Q] = a∀k ∈ N.

Contradiction. The second possibility yields a similar contradiction. Therefore, we

must have p̂ � p(a) for all a, 0 < a < 1.

(“if”): Assume p̂ is not a threshold. Then there exists a sequence p = p(n) such

that
p

p̂
→ 0 and lim inf Pr[G(n, p) ∈ Q] 	 0, or p exists such that

p

p̂
→ ∞ and

lim sup Pr[G(n, p) ∈ Q] � 0.

In the first case, there exists a > 0 and a subsequence n1 < n2 < · · · along

which Pr[G(n, p) ∈ Q] ≥ a, so that by definition of p(a), p(a;nk) ≤ p(nk).4 Thus,

since p � p̂, for all c > 0, there exists N ∈ N such that n > N implies p(n) < cp̂.

Hence, for k > N , nk > N , so that p(a;nk) < cp̂(nk). Therefore, p̂ is not O(p(a)),

so p̂ 6� p(a).

The second case proceeds similarly. �

Theorem 3.5. Every nontrivial monotone increasing property has a threshold.

The proof method relies on an extension of the 2-fold sprinkling process began

last time to an m-fold sprinking process.

Proof. Fix ε, 0 < ε < 1
2 . Choose m = m(ε) large enough that (1− ε)m < ε. Fix

n temporarily, and take m independent copies of G(n, p(ε)), named G1, . . . , Gm.

By m-fold sprinkling and the inclusion-exclusion principle, their union (literally

superimposing the graphs, and identifying common edges) is a G(n, p′), where p′ =

1− (1− p(ε))m ≤ mp(ε). Therefore, we have that

Pr[G1 ∪ . . . ∪Gm ∈ Q] = Pr[G(n, p′) ∈ Q] ≤ Pr[G(n,mp(ε)) ∈ Q].

Yet by the independence of the choices, and since Pr[Gi ∈ Q] = Pr[G(n, p(ε)) ∈
Q] = ε, we have that

Pr[G1 ∪ . . . ∪Gm 6∈ Q] =

m∏
i=1

Pr[Gi 6∈ Q] = (1− ε)m < ε,

and hence

Pr[G(n,mp(ε)) ∈ Q] ≥ 1− Pr[G1 ∪ . . . ∪Gm 6∈ Q] ≥ 1− ε.

Therefore, by definition of p(a), p(1 − ε) ≤ mp(ε), since p → Pr[G(n, p) ∈ Q] is

increasing in p by Q an increasing graph property. By the monotonicity of p(a),

4This depends in the monotonicity of Pr[G(n, p) ∈ Q] on p, proved last time.
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however, we have

p(ε) ≤ p
(

1

2

)
≤ p(1− ε) ≤ mp(ε).

Note also that m depends on ε, and not on n. Therefore, the same inequalities

hold for every m, and hence

p(ε) � p
(

1

2

)
� p(1− ε),

for every 0 < ε < 1
2 . Therefore, by the Lemma, p̂ = p

(
1
2

)
is a threshold.

�

3.2. Sharp Thresholds. We next discussed various definitions of a stricter kind

of threshold.

Definition 3.6. p̂ is said to be a sharp threshold for Q if

Pr[G(n, p) ∈ Q]→

{
1, p ≥ (1 + η)p̂ for some η > 0

0, p ≤ (1− η)p̂ for some η > 0

A (non-sharp) threshold, by contrast, requires that p is eventually greater than

any constant multiple of p̂ before requiring that the limit goes to 1. Therefore,

sharp thresholds are indeed thresholds.

Another characterization of sharp thresholds comes from the concept of the

“widths of the windows of change.”

Definition 3.7. Fix 0 < ε < 1
2 . Then define the 2(1 − ε)-width δ = δ(ε) =

p(1− ε)− p(ε).

Small widths imply that a relatively small change in the input edge probability

controls whether or not the output probability of a graph having property Q is

likely or unlikely. In fact, we have the following fact.

Lemma 3.8. p̂ is a sharp threshold if and only if for all ε, 0 < ε < 1
2 , δ = δ(ε) =

o (p̂).

Proof. (“only if”) Suppose p̂ is a threshold. Then we claim that for all a, 0 < a < 1,

that for all η, 0 < η < 1, there exists N = N(a, η) such that n > N implies

(1− η)p̂ < p(a) < (1 + η)p̂.

Suppose, by way of contradiction, that the above does not hold. Then for some

a, for some η > 0, either p(a) ≤ (1 − η)p̂ infinitely often or (1 + η)p̂ ≤ p(a)

infinitely often. In the first case, we have an infinite subsequence n1 < n2 < · · ·
such that p(a;nk) ≤ (1− η)p̂(nk). Re-extend p(a;nk) to a sequence q(n) such that

q(nk) = p(a;nk) and that q(n) ≤ (1 − η)p̂(n) for all n.5 Then q(n) ≤ (1 − η)p̂(n),

5For example, for any n 6= nk for some k, just define q(n) = (1− η)p̂(n).
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so by the fact that p̂ is a threshold, we have that Pr(G(n, q) ∈ Q)→ 0 as n→∞;

in particular, Pr[G(nk, p(a;nk) ∈ Q] = Pr[G(nk, q(nk)) ∈ Q] → 0 as k → ∞. Yet

Pr[G(nk, p(a;nk) ∈ Q] = a by definition, for all k. Hence, a → 0 as k → ∞.

Contradiction. The second possibility ((1 + η)p̂ ≤ p(a) infinitely often) also causes

a contradiction in the same way. Therefore, the claim holds.

From the claim, and from monotonicity of p(a), it follows that for any a, b,

0 < a < b < 1, we have that for n > max {N(a, η), N(b, η)},

0 < p(b)− p(a) < [(1 + η)− (1− η)]p̂ = 2ηp̂.

Since η is arbitrary, it is clear that p(b) − p(a) = o(p̂). Fixing 0 < ε < 1
2 , and

setting a = ε and b = 1− ε, we have that δ(ε) = p(1− ε)− p(ε) = o(p̂). This works

for all such ε.

(“if”) Exercise.

�

Another basic fact in this setting shows that if sharp thresholds exist, then p
(

1
2

)
reprises its role as the universal threshold.

Lemma 3.9. (1) If a sharp threshold for a nontrivial, increasing property Q

exists, then for all ε, 0 < ε < 1,

(1)
p(ε)

p( 1
2 )
→ 1 as n→∞.

(2) If for a given nontrivial, increasing property Q the limit in 1 holds for all

ε, 0 < ε < 1, then p

(
1

2

)
is a sharp threshold.

In particular, if any sharp threshold exists, p

(
1

2

)
is also a sharp threshold.

Proof. Suppose p̂ is a sharp threshold for a nontrivial, increasing property Q.

First, take ε with 0 < ε < 1
2 . Then by the previous lemma, for any c > 0, for

n > max {N(ε, c), N(1− ε, c},

p

(
1

2

)
− p(ε) ≤ p(1− ε)− p(ε) ≤ cp̂.

Dividing both sides by p

(
1

2

)
and moving some terms around, we get that

1− c p̂(n)

p
(

1
2

) ≤ p(ε)

p
(

1
2

) .
Yet since p̂ is a sharp threshold, it is a regular threshold, and hence p̂ � p

(
1
2

)
. In

particular, then, there exists a constant k such that p̂(n)

p( 1
2 )
≤ k. Therefore, for large
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enough n,

1− ck ≤ 1− c p̂(n)

p
(

1
2

) ≤ p(ε)

p
(

1
2

) .
Since k is fixed and c is arbitrary, this shows that lim inf

p(ε)

p
(

1
2

) ≥ 1. Yet ε < 1
2 , so

p(ε) ≤ p
(

1
2

)
and hence lim sup

p(ε)

p
(

1
2

) ≤ 1.

The case 1
2 < ε < 1 is similar, and of course the case ε = 1

2 is trivial.

Now, suppose that Q is a nontrivial, increasing graph property such that for all

ε, 0 < ε < 1, 1 holds. Therefore, for all C > 1, there is M = M(ε, C) such that

n > M implies
1

C
p

(
1

2

)
< p(ε) < Cp

(
1

2

)
.

Suppose that for some η > 0, q(n) ≥ (1 + η)p
(

1
2

)
for all n. Then for C := 1 + η,

and fixing ε ∈ (0, 1), n > M = M(ε, C), the above gives

q(n) ≥ (1 + η)p

(
1

2

)
= Cp

(
1

2

)
> p(ε),

and hence, by the monotonicity of Pr[G(n, p) ∈ Q] in p proved last time, for n > M ,

Pr[G(n, q) ∈ Q] ≥ Pr[G(n, p(ε) ∈ Q] = ε.

Since this works for all ε ∈ (0, 1), we have that Pr[G(n, q) ∈ Q]→ 1 as n→∞.

Similarly, if for some η > 0, q(n) ≤ (1 − η)p
(

1
2

)
, then Pr[G(n, q) ∈ Q] → 0 as

n→∞.

�

3.3. An example. We now apply our work on thresholds to a common choice of

graph property. We begin today and continue on Wednesday, Aug. 29th.

Exercise 3.10. One nontrivial, increasing graph property is the existence of sub-

graphs isomorphic to complete graphs of a specified size. To set notation, let a graph

G be in Qm if and only if G contains a subgraph isomorphic to Km, the complete

graph on m vertices. Let Nm be the random variable counting the number of Km’s

in a given graph; then G ∈ Qm if and only if Nm(G) 	 0.

Our first claim is that for fixed n, and taking expectation over the space of graphs

G(n, p), E[Nm] =

(
n

m

)
p

m
2


. Note that for fixed n, there are only finitely many

distinct m-tuples of vertices with which to create a Km. Therefore, if i ∈

(
[n]

m

)
is

an m-tuple of vertices of G(n), then let the set Ai be the subset of graphs in G(n, p)

in which the m-tuple of vertices i creates a Km. Since indiviudal edges exist with
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probability p, and since

(
m

2

)
edges are needed to form Km, we have for each i

that Pr(Ai) = p

m
2


. For notational convenience, let Yi = 1Ai be the indicator

function of Ai; then EYi = p

m
2


.

Further, since Nm is the total number of Km’s, and each possible Km is indexed

by some i ∈

(
m

2

)
, we have that Nm is merely the sum of the indicator variables

Yi: Nm =
∑

i∈

 [n]

m


Yi. Since expectation is linear, the expectation operator passes

through the finite sum indicated, so we have that

E(Nm) = E


∑

i∈

 [n]

m


Yi


=

∑
i∈

 [n]

m


E(Yi)

=
∑

i∈

 [n]

m


p

m
2


=

(
n

m

)
p

m
2



Thus, the claim is proved.

Remark 3.11. The above work demonstrated that the summability of expectations

happens despite the lack of independence of some pairs of subsets; for example, if

m = 4 and n ≥ 5, the existence of K4’s on the vertex sets {1, 2, 3, 4} and {1, 2, 3, 5}
are certainly not independent. We resolve this issue in two ways. First, we note

that independence of random variables X,Y implies that the expectation of their

product is 0: E(XY ) = 0. Thus, independence or dependence of random variables

does not matter until we start studying variances and the second-moment method.

Second, we note that if m is fixed and n is large, then there are many pairwise

independent events: e.g., in the m = 4 example above, the existence of K4’s on the
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vertex sets {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, are independent. The heuristic is

that if n is large relative to m, then “most” pairs are independent.

Exercise 3.12. Continuing the example above, we also note that by Stirling’s

formula, if m is fixed, then E[Nm] =

(
n

m

)
p

m
2


� nmp

m
2


. Therefore, if

p(n) = n
−2

(m−1) , then by the fact that

(
m

2

)
=
m(m− 1)

2
, we have that nmp

m
2


=

nm−m = 1. Therefore, it is simple to check that if p � n
−2
m−1 , then E[Nm] → ∞,

and if p � n
−2

(m−1) , then E[Nm] → 0. From this, we can make the conjecture that

a threshold of the graph property Qm is in fact n
−2

(m−1) . In fact, we can show the

following.

Theorem 3.13. (1) If p� n
−2

(m−1) , then Pr[G(n, p) ⊇ Km]→ 0 as n→∞.

(2) If p� n
−2

(m−1) , then Pr[G(n, p) ⊇ Km]→ 1 as n→∞.

(3) If p = cn
−2

(m−1) , then Pr[G(n, p) ⊇ Km] → f(c) as n → ∞, where 0 <

f(c) < 1 is a constant depending on c alone, not n or m.

This result demonstrates that n
−2

(m−1) is in fact a threshold, but not a sharp thresh-

old (by specifics of the constant f(c), c can be greater than 1 but Pr[G(n, p) ⊇
Km] 6→ 1).

For an example of a sharp threshold, we consider the property of connectedness.

Theorem 3.14. (1) If p ≥ log(n) + ω(1)

n
, then Pr[G(n, p) is connected]→ 1.

(2) If p ≤ log(n)− ω(1)

n
, then Pr[G(n, p) is connected]→ 0.

(3) If p =
log(n) + c

n
, then Pr[G(n, p) is connected]→ e−e

−c
.

Recall that q = ω(1) means that some function is diverging, however slowly, to

infinity; in particular, η log(n) is a reasonable choice (showing that we have a sharp

threshold), but log(log(log(· · · log(n) · · · )) also works. The width of this window is

slightly larger than 2
n , since you have to allow slow-growing functions.

(Our discussion of thresholds followed Section 1.5 of [7].)
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4. Wednesday, August 29

We will use the second moment method to prove that the threshold function for

G(n, p) includes K4 is p = n−2/3.

Definition 4.1.

V ar[X] := E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− E[X]2.

Notation σ2 = V ar[X], where σ is the standard varaiation.

Theorem 4.2 (Chebyshev’s Inequality). Let µ := E[X]. Then,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2

Proof. We have

σ2 = V ar[X] = E[(X − µ)2] ≥ λ2σ2Pr[|X − µ| ≥ λσ].

Dividing by σ2λ2 we get
1

λ2
≥ Pr[|X − µ| ≥ λσ].

�

Suppose X = X1 + · · ·+Xm. Then,

V ar[X] =

m∑
i=1

V ar[Xi] +
∑
i 6=j

Cov[Xi, Xj ]

where

Cov[Xi, Xj ] := E[XiXj ]− E[Xi]E[Xj ].

If Xi and Xj are independent r.v.’s, then Cov[Xi, Xj ] = 0. The converse of this

statement is not true. For a counterexample, let Y be the uniform random varibable

on the interval [−1, 1] and let Z = Y 2. Clearly Y and Z are not independent but

Cov[Y, Z] = 0.

If X = X1 + · · ·+Xm where each Xi is a Bernoulli r.v. with

Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi,

then V ar[X] = pi(1− pi) ≤ pi. SO,

V ar[X] ≤ E[X] +
∑
i 6=j

Cov[Xi, Xj ].

In general, if X is a non-negative integer r.v., then

Pr[X > 0] =
∑
i≥1

Pr[X = i] ≤
∑
i≥1

iPr[X + 1] = E[X].

This is a special case of the following theorem.
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Theorem 4.3 (Markov’s Inequality).

Pr[X ≥ a] ≤ E[X]

a

for any non-negative r.v. X.

In particular, if Xn is a sequence of non-negative integer r.v.’s such that E[Xn]→
0, then Xn = 0 a.a.s. In other words,

Pr[Xn = 0]→ 1 as n→∞.

What if E[Xn]→∞? Is it true that Xn > 0 a.a.s.?

Example Let Xn be a sequence of r.v.’s such that

Xn =

en with probability 1
n

0 with probability 1− 1
n

Then, the expected value E[Xn] = en/n→∞ but Pr[Xn > 0] = 1/n→ 0.

Theorem 4.4. Let X be a non-negative integer valued r.v. Then,

Pr[X = 0] ≤ V ar[X]

E[X]2
.

Proof. Set λ = µ/σ. Then,

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] = Pr[|X − µ| ≥ λσ] ≤ 1

λ2
=
σ2

µ2
.

�

Corollary 4.5. If E[X]→∞ and V ar[X] = o
(
E[X]2

)
, then X > 0 a.a.s. �

the same proof shows that

Pr[|X − µ| ≥ εµ] ≤ V ar[X]

ε2E[X]2
.

So if E[X] → ∞ and V ar[X] = o
(
E[X]2

)
, then X ∼ E[X] a.a.s. In other words,

for any fixed ε > 0,

(1− ε)E[X] ≤ X ≤ (1 + ε)E[X]

with probability approaching 1 as n→∞.

Now set X = X1 + · · ·+Xm where Xi is the indicator random variable for the

event Ai. Set

∆ =
∑
i∼j

Pr[Ai and Aj ]

where i ∼ j means that i 6= j and Ai, Aj are not independent.

In particular we have

Cov[Xi, Xj ] = E[XiXj ]− E[Xi][Xj ] ≤ E[XiXj ] = Pr[Ai and Aj ],

so V ar[X] ≤ E[X] + ∆.
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Corollary 4.6. If E[X] → ∞ and ∆ = o
(
E[X]2

)
, then X > 0 a.a.s. (Actually

X ∼ E[X] a.a.s).

Theorem 4.7. n−2/3 is a threshold for G(n, p) ⊃ K4.

Proof. Let X = Xn be the number of K4’s in G(n, p). Previously we have seen

that E[Xn] =
(
n
4

)
p6 � n4p6.

(1) If p� n−2/3, then E[X]→ 0, so X = 0 a.a.s.

(2) If p� n−2/3 then E[X]→∞. To apply second moment method we need to

compute ∆. For i ∈
(

[n]
4

)
, let Ai be the event that “i spans a clique”. Then,

Pr[Ai] = p6

The events Ai and Aj are not independent iff |i ∩ j| = 2 or 3. Let ∆ = ∆2 + ∆3

where ∆2 is the contribution of the pairs (i, j) with |i ∩ j| = 2 and ∆3 is the

contribution of the pairs (i, j) with |i ∩ j| = 3. Then

∆2 � n6p11, ∆3 � n5p9.

On the other hand,

E[X]2 � n8p12.

We conclude the proof by noting that,

∆2

E[X]2
� n6p11

n8p12
=

1

n2p
→ 0,

and
∆3

E[X]2
� n5p9

n8p12
=

1

n3p3
→ 0

as n→∞. �

Exercise 4.8. What is a threshold for G(n, p) contains Km for fixed m?

Exercise 4.9. Is it always true that threshold for “contains H” is n−vH/eH for any

fixed graph H?
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5. Friday, August 31

Question 5.1. Is n−vH/eH always a threshold for the property containment of H

in G(n, p) as a subgraph, i.e. G(n, p) ⊇ H?

The answer is no. Note that when H = K4, it is shown in previous lectures that

n−4/6 = n−2/3 is a threshold.

Consider H = K4 ∪ {extra edge}. Is n−5/7 a threshold? If p � n−5/7, then

E[XH ] → 0 and hence XH = 0 a.a.s. If p � n−5/7, p can still be much less than

the threshold for containment of a K4, since n−2/3 � n−5/7. So if p � n−5/7, it

may even be that XK4
= 0 a.a.s. (eg. p = n−20/29.) Therefore n−5/7 is not the

threshold for containment of H.

Definition 5.2. p(H) is defined to be eH/vH and called the density of H.

H is said to be balanced if p(H ′) ≤ p(H) for every subgraph of H ′ ⊆ H.

Proposition 5.3. Threshold of containment of H is n−vH/eH ⇐⇒ H is balanced.

Proof. [Following chapter 4 of [1].]

=⇒ : Suppose n−vH/eH is a threshold for containment of H and assume to the

contrary that H is not balanced. Then there exists a subgraph H ′ with p(H ′) =
eH′
vH′

> eH
vH

= p(H). Choose α such that p(H ′) < α < p(H) and set p = n−α. Then

p � n−p(H
′) which implies E(# of H’ subgraphs) → 0. So a.a.s. there are no H ′

subgraphs in G(n, p) and hence no H subgraphs.

⇒: We need a couple of facts for this direction.

Take X =
∑m
i=1Xi =

∑m
i=1 1Ai , that is each Xi is 1 on an event Ai and 0

otherwise. Define ∆ =
∑
i∼j Pr(Ai ∩Aj), where i ∼ j is the same as i 6= j and the

events Ai and Aj are not independent. It was showed in previous lectures that

E(X)→∞ and ∆ = o(E(X)2) =⇒ X > 0 and X ∼ E(X) a.a.s.

Define X1, X2, . . . , Xm to be symmetric random variables when there exists a

measure preserving automorphism of underlying probability space taking Xi to Xj

for every i, j.

∆ =
∑
i∼j

Pr(Ai ∩Aj) =
∑
i

Pr(Ai)
∑
j∼i

Pr(Aj |Ai).

Notice that when X1, X2, . . . , Xm are symmetric,
∑
j∼i Pr(Aj |Ai) doesn’t depend

on i, so call it ∆∗. Then ∆ = ∆∗ · E(X), which impies the following corollary:

Corollary 5.4. Let X1, X2, . . . , Xm be symmetric indicator random variables of

A′is and X =
∑m
i=1Xi. Then

E(X)→∞ and ∆∗ = o(E(X)) =⇒ X > 0 and X ∼ E(X) a.a.s.
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Now we are ready to prove the other direction.

For each V -set S ∈
(

[n]
V

)
, let AS be the event that G|S contains H-subgraph and

XS = 1AS . Note that pv ≤ Pr(AS) ≤ v!pv.

Now set X =
∑
S∈([n]

V )XS . Then X > 0 if and only if there exists at least one

H-subgraphs. Note that X doesn’t give the exact count of H-subgraphs.

E(X) =
∑

E(XS) =

(
n

v

)
Pr(AS) = nvpe.

So if p � n−v/e, then X = 0 a.a.s. Suppose p � n−v/e. Let’s compute ∆∗ =∑
T∼S Pr(AT |AS). Notice that here T ∼ S also means that T 6= S and S, T share

a common edge. Fix S.

∆∗ =

v−1∑
i=2

∑
|S∩T |=i

Pr(AT |AS).

For each i, there are O(nv−i) choices for T . Fix S, T with |T ∩ S| = i. Let’s

compute Pr(AT |AS). There are O(1) copies of H on T . Each has at least i ev edges

on vertices of S, since H is balanced. This leaves at least e − i ev edges outside of

S. Then

∆∗ =

v−1∑
i=2

O(nv−1pe−i
e
v ) =

v−1∑
i=2

O((nvpe)1− i
v ) =

v−1∑
i=2

o(nvpe).

Corollary applies. X > 0 a.a.s. �

Theorem 5.5. H is said to be strictly balanced if p(H ′) < p(H) for every subgraph

H ′. Let H have v vertices, e edges and a automorphisms. Let XH be the number

of copies of H in G(n, p). Then,

p� n−v/e =⇒ XH ≈
nvpe

a
.

Theorem 5.6. If H is any graph and p such that E(XH)→∞ for every subgraph

H ′ ⊆ H, then XH ≈ E(XH) a.a.s. and XH > 0 a.a.s.
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6. (Wednesday, September 5)

Let G = K3 and p = c
n for c ∈ (0,∞) a constant. We seek the probability

that there exists any G subgraph of G(n, p). If we let XG be the random variable

counting the number of G subgraphs of G(n, p) we’ll see that Pr [XG = m]→ f(m).

Definition 6.1. z ∈ P0(µ) means z is chosen according to a Poisson distribution

with mean µ. That is Pr[z = t] = µte−µ

t!

Note that
∞∑
t=0

µt

t!
e−µ = e−µ

∞∑
t=0

µt

t!
= e−µeµ = 1

so P0(µ) is in fact a probability distribution on the nonnegative integers. Also note

that
∞∑
t=0

tPr[z = t] =

∞∑
t=1

µt

(t− 1)!
e−µ = µe−µ

∞∑
t=0

µt

t!
= µe−µeµ = µ

so the mean of P0(µ) is µ as desired.

Now again letting G = K3, p = c
n and XG be the number of K3 subgraphs

of G(n, p) we have that E[XG] =
(
n
3

)
p3 which tends to c3

6 as n → ∞. In fact

XG
D−→ P0

(
c3

6

)
(approaches in distribution). That is Pr[XG = t] → µte−µ

t! as

n→∞ where µ = c3

6 . In particular the probability that there are no K3 subgraphs

is approaching e−c
3/6.

Note that if all
(
n
3

)
events were independent, then we would have Pr[XG = 0] =

(1 − p3)(
n
3) ≈ e−p

3n3/6 → e−c
3/6. We will next apply the method of (factorial)

moments also know as Brun’s sieve.

Theorem 6.2. Suppose X = Xn is a distribution on nonnegative integers such that

E[X]→ µ as n→∞ and for every fixed r, E
[(
X
r

)]
→ µr

r! . Then X
D−→ P0(µ).

Now note that If X = X1 +X2 + · · ·+Xm is a sum of indicator random variables

corresponding to events A1, A2,. . .,Am then E
[(
X
r

)]
=

∑
i1,i2,...,ir∈([m]

r )

Pr[Ai1 ∧Ai2 ∧

. . . ∧Air ].
Returning to our example where G = K3 we know that E[XG]→ c3

6 . Now when

considering E
[(
XG
2

)]
we realize that two triangles will either be disjoint, intersect

in a vertex, or intersect in an edge. The expected number of two disjoint triangles is

p6
(
n
6

)(
6
3

)
1
2 ≈

1
2

(
n3

6

)2

p6 ≈ µ
2 . While on the other hand the expected number of two

triangles intersecting in a vertex is p6
(
n
3

)(
n−3

2

)
3
2 = O(n5p6) = o(1). Similarly the

expected number of two triangles sharing an edge is p5
(
n
4

)(
4
2

)
= O(n4p5) = o(1). So

E
[(
XG
2

)]
→ µ2

2 as n→∞ as desired. Now for E
[(
XG
3

)]
consider that the expected

number of 3 disjoint triangles is 1
3!

(
n
3

)(
n−3

3

)(
n−6

3

)
p9 ≈ µ3

3! and the contribution to
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E
[(
XG
3

)]
from 3 intersecting triangles will be small. Thus again we will see that

E
[(
XG
3

)]
→ µ3

3! . Continuing in this way and applying the previous theorem we see

that XG
D−→ P0

(
c3

6

)
.

Theorem 6.3. If H is strictly balanced ( eH′vH′
< eH

vH
for every proper subgraph H ′)

and if npeH/vH → c > 0 as n→∞ then XH
D−→ P0(µ) where µ = cvH

aut(H) . (aut(H)

is the number of automorphisms of H.)

Lemma 6.4. Let et be the minimum number of edges in a t vertex union of k not

mutually disjoint copies of a strictly balanced graph G, and suppose 2 ≤ k ≤ t <

kvG. Then for m(G) = eG
vG

we have et > tm(G).
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7. (Friday, September 7)

Reminded:

• mG = max eG′
vG′

, where maximum is taken over all subgraphs G′

• G is strictly balanced if mG′ < mG for every proper subgraph G′

We want to show:

Theorem 7.1. If

(1) G is strictly balanced, and

(2) p is such that E[XG]→ µ ∈ (0,∞),

then XG → Po(µ).

Idea: method of moments

• If E→ µ ∈ (0,∞) and E
[(
X
k

)]
→ µk

k! , then X
D→ Po(µ).

• If X = X1 + . . .+Xm and Xi is indicator r.v. for event Bi, then

E
[(
X

k

)]
=

∑
all k subsets of {1, 2, . . . ,m}

Pr[Bi1 ∩ . . . ∩Bik ].

Proof of Theorem 7.1: Write E
[(
XG
k

)]
= X ′k+X ′′k . Here, XG is sum of indica-

tor r.v.s. How many?
(
n
vG

)
(vG)!/aG where aG := aut(G). X ′k denotes contribution

to sum from mutually vertex disjoint copies of G, and X ′′k denotes everything else.

Note:

X ′k =
1

k!

(
n
vG

)
(vG)!peG

aG

(
n−vG
vG

)
(vG)!peG

aG
· · ·
(
n−(k−1)vG

vG

)
(vG)!peG

aG
≈ 1

k!
µk

since µ = E[XG] = peG
(
n
vG

) (vG)!
aG
≈ nvGpeG

aG
,
(
n
vG

)
≈ nvG

(vG)! and
(
n−(k−1)vG

vG

)
≈ nvG

(vG)! .

Let et be the minimum number of edges in t vertex union of k not mutually

disjoint copies of G.

Lemma 7.2. For k ≥ 2 and k ≤ t < kvG, we have et > tmG, i.e., et
t > mG

(density of union > density of G).

Proof of Lemma 7.1: For arbitrary graph F , define fF = mGvF − eF .

Note:

(1) fG = 0

(2) fH > 0 for any proper subgraph H of G because G is strictly balanced.

(3) fF1∪F2 = fF1 + fF2 − fF1∩F2 for arbitrary graphs F1, F2

Let F = ∪ki=1Gi. Assume without loss of generality G1 ∩G2 6= ∅.

Induction on k: we want to show fF < 0

k = 2 : fG1∪G2
= fG1

+ fG2
− fG1∩G2

< 0 (∵ fG1
= fG2

= 0, fG1∩G2
> 0)

k ≥ 3 : Let F ′ = ∪k−1
i=1 Gi and H = F ′ ∩ Gk. Then, fF = fF ′ + fGk − fH < 0 (∵
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fF ′ < 0 by induction, fGk = 0, and fH ≥ 0 since H can be any subgraph of G

including null graph or G itself) �

To finish proof of Theorem 7.1, we want X ′′k = o(1) for every k.

X ′′k =

kvG−1∑
t=k

O(ntpet)

There are only finite many possibilities for F , for any fixed k, t. Note that ntpet �
ntn−et/mG for p � n−1/mG . But t− et/mG < 0 by Lemma 7.2. So, X ′′k = o(1). �

A few balanced but not strictly balanced examples:

(1) G = 4 4, T = 4, p = c
n

We have a.a.s. XG =
(
XT
2

)
= 1

2XT (XT − 1) (because a.a.s. no. 44 < 4)

We know XT → z ∈ Po( c
3

6 ).

Continuous functions preserve converges in distribution.

So, XG
D→ 1

2z(z − 1), z as above

In particular, Pr[XG = 0]→ (1 + c3

6 )e−
c3

6

(∵ Pr[Z = 0] = e−
c3

6 , Pr[Z = 1] = c3

6 e
− c36 )

(2) G = 4 �, T = 4, S = �, p = c
n

a.a.s. XG = XTXS

XT → z1 ∈ Po( c
3

6 )

XS → z2 ∈ Po( c
4

8 )

It turns out that (XT , XS)
D→ (Po( c

3

6 ),Po( c
4

8 )) and limit variables are in-

dependent (see chapter 6 of JLR).

XG → z1z2

Pr[XG = 0] = 1− (1− e− c
3

6 )(1− e− c
4

8 )

(3) G = 4 , p = c
n

It can be shown that XG →
∑ZT
i=1Wi

ZT ∈ Po( c
3

6 )

Each Wi ∈ Po(3c) all independent

Idea: Zt triangles, Each Wi perpends edges

Exercise 7.3. What is Pr[XG = 0] in Example (3)?
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8. (Monday, September 10)

Connection of Three Distributions; Binomial, Poisson and Normal

8.1. Binomial distribution. Bin(n, p), a distribution on {0, 1, · · · , n}means when

flipping a coin with the weighted head with probability p and the tail with proba-

bility 1 − p n times, counting the number of heads. (or it can be considered as a

sum of i.i.d Bernolli random variables.)

Example The number of edges in G(n, p) is Bin(N, p) for N =
(
n
2

)
, and p = p.

Note If Y ∈ Bin(n, p), then E[Y ] = np.

To see connections of Bin(n, p) and Po(µ), set µ = pn ∈ (0,∞) and let n → ∞
( or p→ 0). Let Y ∈ Bin(n, p), then for a fixed k ≥ 0,

Pr[Y = k] =

(
n

k

)
pk(1− p)n−k

∼ nk

k!

(µ
n

)k
e−

µ
n (n−k) (∵ (1− p) ∼ e−p)

→ µk

k!
e−µ as n→∞

In other words, if pn = µ, and n→∞ then

Bin(n, p)
D−→ Po(µ).

Why is Poisson so ubiquitous? “law of rare events”

Example Let XT be the number of triangles in G(n, p) for p = c
n . So E[XT ]→

c3

6 as n → ∞. We showed by method of moments that XT
D−→ Po( c

3

6 ). Is XT is a

binomial random variable? No, but seems to get like one. Model XT as Bin(N,P ),

where N =
(
n
3

)
, P = p3.

Binomial Revisited Let Y ∈ Bin(n, p). If set p ∈ (0, 1)and let n → ∞, what

can we say about the limiting behavior?

(2)
Y − E[Y ]√

Var(Y )

D−→ N (0, 1),

whereN (0, 1) a normal distribution with mean 0, variance 1 and probability density

function f(x) = 1√
2π
e−x

2/2. So if X ∈ N (0, 1) then

P (X ≤ a) =
1√
2π

∫ a

−∞
e−x

2/2dx,

and (2) is equivalent that

P (Y ≤ a)→
√

2π

∫ a

−∞
e−x

2/2dx

for every fixed a ∈ R and n → ∞. This holds in greate generality, even when

variance does not exist.
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8.2. Central limit theorem. See Feller Vol. 1 and Vol. 2 for more general statement.

Theorem 8.1. Let Sn = X1 + · · ·+Xn where Xi are i.i.d random variables such

that E[Xi] = M and Var[Xi] = σ2 exist. Then

Pr

[
Sn − nµ
σ
√
n

< β

]
→
∫ β

−∞
e−x

2/2dx.

In other word,
Sn − E[Sn]√

Var[Sn]
→ N (0, 1).

Corollary 8.2. If Y ∈ Bin(n, p) for a fixed p ∈ (0,∞), then

Y − E[Y ]√
Var[Y ]

→ N (0, 1).

Theorem 8.3. Let X = Xn be Poisson distribution with meanµ = µn and suppose

µ→∞, n→∞. Then
X − E[X]√

Var[X]
→ N (0, 1).

�
�

�
�

�
�

�
�
��+

Q
Q
Q
Q
Q
Q
Q
Q
QQs

-

Bin(n, p)

Poisson Normal (Gaussian)
µ→∞

“p small”

pn = c

“p large (fixed)”

pn→∞

8.3. Random Graphs. Recall that

mG = max
H≤G,

subgraphs

eH
vH

.

Recently, we have proved

(1) p = n
− 1
mG is the threshold for appearance of G subgraphs.

(2) If G is strictly balanced and E[XG]→ µ, then XG
D−→ Po(µ).

What if p >> n
− 1
mG ? (See Ch.6 and Thm 6.5 on JTR.)

Theorem 8.4. Let G be a fixed graph, with eG > 0. Suppose that

(1) npm(G) →∞,

(2) n2(1− p)→∞, (i.e. p is not too large)



24 MATTHEW KAHLE

then
XG − E[XG]√

Var[XG]

D−→ N (0, 1).

Note Suppose n2(1−p)→ c ∈ (0,∞), then E[# non-edges ] =
(
n
2

)
(1−p)→ c/2.

In fact, Xn = # non-edges is binomial with finite mean, so it is Poisson in limit

with µ = c/2, and Pr[no non-edges]→ e−c/2 > 0. That is, Pr[G(n, p) is a complete

graph] is bounded away from zero.



LECTURE NOTES: RANDOM GRAPHS AND PERCOLATION THEORY 25

9. (Wednesday, September 12)

Let ω(G) denote the clique number of a graph, G, which is defined as the size of

the largest complete subgraph of G.

Exercise 9.1. Suppose p = n−0.99. How does ω(G(n, p)) behave?

Since we know that the threshold for having a K3 subgraph is n−1 and the

threshold for having a K4 subgraph is n−
2
3 , we have a.a.s. at least one K3 subgraph

and zero K4 subgraphs. So Pr[ω(G(n, p)) = 3]→ 1.

More generally, since a complete graph is strictly balanced, we know the thresh-

old for having a Kk subgraph (k fixed) is at p = n
− k

(k2) = n
−2
k−1

Exercise 9.2. Fix k and let p = cn
−2
k−1 . What can we say about ω(G(n, p))?

First, we know that a.a.s we have Kk−1 subgraphs and zero Kk+1 subgraphs.

Moreover sometimes, we have Kk and sometimes we don’t. Hence a.a.s., ω(G(n, p))

is either k − 1 or k.

If X = the number of Kk subgraphs, then X converges in distribution to a

poisson random variable with mean µ, where µ = limE[X].

E[X] =

(
n

k

)
p(
k
2) ∼ nk

k!

c(
k
2)

nk
∼ c(

k
2)

k!

So we have that

Pr[ω ≥ k] = Pr[∃Kk ⊂ G]→ Pr[Po(
c(
k
2)

k!
) ≥ 1] = 1− exp

(
−c

(k2)

k!

)

So Pr[ω = k − 1]→ exp

(
− c

(k2)
k!

)
and Pr[ω = k]→ 1− exp

(
− c

(k2)
k!

)
.

Remark 9.3. For a fixed α > 0, if p = O(n−α), then the clique number should be

concentrated on at most 2 values.

Exercise 9.4. What can we say about larger p? For example, suppose p = 1
2 .

What is ω(G(n, p))?

Heuristically if we solve n
−2
k−1 = p for k, we find k ∼ 2 log(n)

− log(p) . So we might suspect

that k ∼ 2 log2 n.

Define f(k) = E[number of k − cliques] =
(
n
k

) (
1
2

)(k2).

Exercise 9.5. Let δ > 0. Show that if k ≥ (2 + δ) log2 n, then f(k) → 0 and if

k ≤ (2− δ) log2 n, then f(k)→∞, as n→∞.

Remark 9.6. If N →∞ and M = o(
√
N), then

(
N
M

)
∼ NM

M ! as N →∞
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Suppose that k = O(log(n)), then

(
n

k

)(
1

2

)(k2)
∼ nk

k!

(
1

2

)(k2)
∼ 1√

2πk

eknk

kk

(
1

2

)(k2)
=

1√
2π

exp

(
k + k log(n)− (k +

1

2
) log(k)−

(
k

2

)
log(2)

)

=
1√
2π

exp

(
k log(n)− k2

2
log(2) +O(k log(k))

)

=
1√
2π

exp

(
k log(n)− k2

2
log(2) +O(log(n) log(log n))

)
If k = (2 + ε) log2(n), then

f(k) ∼ 1√
2π

exp

(
−ε
(

1 +
ε

2

) 1

log(2)
log2(n) + o(log2(n))

)
Depending on the sign of ε, we get the desired result.

Following theorem is in Chap 4 of Alon and Spencer.

Theorem 9.7. Let k = k(n) satisfying k ∼ 2 log2 n and f(k) → ∞ Then a.a.s.

ω(G(n, p)) ≥ k.

Proof using Second Moment method. (Also see Chap 10 of Alon and Spencer

for more precise results using Janson’s Inequality).

Let A1, A2, . . . , A(nk)
be the events that correspond to one of the

(
n
k

)
possible

k−cliques is present. Let X1, . . . be the corresponding indicator random variables

and X =
∑
lXl.

Fix l, and let ∆∗ =
∑
j∼l Pr[Aj |Al].

If we can show that E[X]→∞ and ∆∗ = o(E[X]), then we have that a.a.s.X >

0.

By hypothesis, E[X] = f(k)→∞.

If i corresponds to the number of vertices in the intersection with the fixed clique

l of size k, then

∆∗ =

k−1∑
i=2

(
k

i

)(
n− k
k − i

)(
1

2

)(k2)−(i2)

= E[X]

k−1∑
i=2

g(i)

where

g(i) =

(
k
i

)(
n−k
k−i
)(

n
k

) 2(i2)

Exercise 9.8. Show that
∑
i g(i) = o(1)
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We will show that g(2) and g(k − 1) tend to zero.

g(2) =

(
k
2

)(
n−k
k−2

)(
n
k

) 2(2
2) ∼ k2

2

nk−2

(k − 2)!

k!

nk
2 ∼ k4

n2
= o(1)

g(k−1) =

(
k
k−1

)(
n−k

1

)(
n
k

) 2(k−1
2 ) =

k(n− k)2−(k−1)(
n
k

)
2(k2)

∼ 2k · n · 2−k

f(k)
∼ 2

f(k)
exp (log(k) + log(n)− k log(2))

Since k ∼ 2 log(n)
log(2) , this exponent tends to −∞ giving the result we want.

Hence X > 0 a.a.s., which implies that ω(G(n, 1
2 )) ≥ k.

Remark 9.9. Since f(k+1)
f(k) = n−k

k+1 2−k and k ∼ 2 log2 n, we have that f(k+1)
f(k) =

o(n−1).

We can let k0 = k0(n) be such that f(k0) ≥ 1 > f(k0 + 1).

For ”most” n, f(k) jumps from large f(k0) to small f(k0 + 1).

Corollary 9.10 (Bollobas, Erdos 76; Matule 76). There exists a sequence k = k(n)

such that Pr[ω(G(n, 1
2 )) = k or k + 1]→ 1

Moreover in Bollobas’ book (on the chapter on cliques), it is shown that k0 =

2 log2 n− 2 log2 log2 n+ log2
e
2 + o(1)

Question 9.11. What is the threshold for G(n, p) to be connected?

One possible approach is to count the number of spanning trees in G(n, p)

From Cayley’s Theorem, we know that the number of trees on n vertices is nn−2.

Exercise 9.12. Consider E[number of spanning trees]and the threshold of connec-

tivity. How many spanning trees should we expect to see?
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10. (Friday, September 14)

Today: Threshold for Connectivity of G(n, p).

A naive approach is to count spanning trees. Recall that the graph Kn has nn−2

spanning trees. The probability that a particular spanning tree occurs in G(n, p)

is pn−1, so

E[# of spanning trees] = nn−2pn−1 = n(np)p−1

Remark 10.1. If p ≤ c
n for c < 1, then E[# of spanning trees] → 0 ⇒ a.a.s @

spanning trees ⇒ a.a.s G(n, p) is not connected. And if p ≥ c
n for c > 1, then

E[# of spanning trees]→∞.

In the case that p ≥ c
n , even though E → ∞, this does not necessarily imply

that G(n, p) is connected a.a.s. Instead we conclude that V ar[X] 6= 0.

Theorem 10.2. Threshold for Connectivity of G(n, p)

(1) If p ≥ log n+ ω(1)

n
, then G(n, p) is connected a.a.s.

(2) If p ≤ log n− ω(1)

n
, then G(n, p) is disconnected a.a.s.

(3) If p =
log n+ c

n
, c > 1 constant, then Pr[G(n, p) is connected] → e−e

−c

Erdős-Rényi’s idea was to look for components of order i = 1, 2, . . . , dn2 e

i=1: Isolated vertices. Let Xi = # components of order i.

E[X1] = n(1− p)n−1. So if p = logn+c
n , then

E[X1] = n

(
1− log n+ c

n

)n−1

≈ ne−
logn+c
n (n−1) → ne− logne−c = e−c as n→∞

Exercise 10.3. Show that X1
D−→ Po(e−c), though none of the events are

pairwise disjoint for distinct vertices.

i=2: Isolated edges.

E[X2] =
(
n
2

)
p(1− p)2(n−2). If p ∼ logn

n ,

E[X2] ≈ n2

2

log n

n
e−

logn
n 2(n−2) → n log n

2
e−2 logn = O

(
log n

n

)
→ 0

i=3: Triangles and paths of length two on three vertices.

E[X3] ≤
(
n
3

)
3p2(1− p)3(n−3). Again, for p ∼ logn

n ,

E[X3] ≈ n3

6

log2 n

n2
e−

logn
n 3(n−3) → n log2 n

6
e−3 logn = O

(
log2 n

n2

)
→ 0



LECTURE NOTES: RANDOM GRAPHS AND PERCOLATION THEORY 29

For an upper bound that a set of k vertices is connected, recall

E[# spanning trees] = kk−2pk−1

Now for 4 ≤ k ≤ dn2 e

E[Xk] ≤
dn2 e∑
i=4

(
n

k

)
kk−2pk−1(1−p)k(n−k) ≤

dn2 e∑
i=4

nk

k!
kk−2pk−1e−pk(n−k) ≤

dn2 e∑
i=4

nk
√

2πk
(
k
e

)k kk−2pk−1e−pk(n−k)

=
1√
2π

dn2 e∑
i=4

1

k5/2
(ne)kpk−1e−pk(n−k) =

1

p
√

2π

dn2 e∑
i=4

1

k5/2

( enp

ep(n−k)

)k
≤ 1

p
√

2π

dn2 e∑
i=4

( enp

ep(n−k)

)k

A standard trick is to bound by a geometric series with a→ 0 and r → 0

So k ≤ dn2 e ⇒ ep(n−k) ≥ e
logn
n

n
2 = e

logn
2 =

√
n, and enp ∼ e log n⇒ enp

ep(n−k)
→ 0

Look at a, the k = 4 term:

1

p
√

2π

( enp

ep(n−4)

)4

=
1√
2π

e4n4p3

e4p(n−4)
∼

e4n4 log3 n
n3

e4 logn
n (n−4)

→ e4n log3 n

n4
=
e4 log3 n

n3
→ 0

=⇒ 1

p
√

2π

dn2 e∑
i=4

( enp

ep(n−k)

)k
→ 0

Hence E[# components of order 2 ≤ k ≤ dn2 e]→ 0

Thus if p =
log n+ c

n
, then a.a.s. G(n, p) consists of a (unique) giant component

of order (1− o(1))n isolated vertices. And E[X1] = e−c, X1 ∈ Po(e−c). So

Pr[G(n, p) connected] ∼ Pr[G(n, p) has no isolated vertices]→ e−e
−c

In fact, for p =
log n+ c

n
, X1 = # components− 1, so we have β̃0

D−→ Po(e−c).

Exercise 10.4. What is the threshold for the appearance of cycles? Is it sharp?
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11. (Monday, September 17)

Today : Expander-like qualities of G(n, p), Stronger notions of connectivity.

Definition 11.1. Cheeger number of a graph G

h(G) = min
#e(s, S)

|S|
,

where minimum is taken over all S ≤ V (G) and 1 ≤ |S| ≤ |V (G)|
2 .

Remark: This measures how hard it is to disconnect the graph. There’s other

ways to measure this: Vertex connectivity, edge connectivity.

Exercise: Show that p = logn+(k−1) log logn
n is sharp threshold for k-connectivity.

Clearly, h(G) ≤ min degree (G).

Example. G = Kn: complete graph.

Let k = |S|. Then e(S, S) = k(n− k).

h(Kn) = min
1≤k≤bn2 c

k(n− k)

k
∼ n

2
.

Our goal is to understand h(G(n, p)) to see that once G(n, p) is connected, it is

very connected.

Often we want ”concentration of measure” results showing Pr[|X − E[X]| > t]

is small. In many cases, one can do much better than Chebyshev’s inequality / 2nd

moment.

Theorem 11.2. Chernoff-Hoeffding bounds.

Let X =
∑
i∈[m]Xi, where Xi are independent distributed in [0, 1]. (For example,

i.i.d. indicator random variables.)

Pr[X > E[X] + t] ≤ e−2t2/m

Pr[X < E[X]− t] ≤ e−2t2/m

Pr[X > (1 + ε)E[X]] ≤ exp(−ε
3

3
E[X])

Pr[X < (1− ε)E[X]] ≤ exp(−ε
3

2
E[X])

Theorem 11.3. If p = w
(

logn
n

)
and ε > 0 fixed, then a.a.s

(1− ε)np
2

≤ h(G(n, p)) ≤ (1 + ε)np)

2
.

Proof. Upper bound is clear. (Use Chernoff-Hoeffding boudns. E[#edges] = n
4 p

and n2/4p
n/2 = np/2.)

For any set S of s vertices, E[#edges] = ps(n− s). Since s ≤ n/2,

Pr[#edges ≤ (1− ε)ps(n− 2)] ≤ exp(−ε
2

2
ps(n− 2)) ≤ exp(−ε

2

2
ps
n

2
).
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Set p ≥ C logn
n and C > 1 to be determined.

Pr[#edges ≤ (1− ε)ps(n− 2)] ≤ exp(−ε
2

4
Cs log n).

Then, for c > 4
ε2 ,

Pr(h(G(n, p))) ≤
bn2 c∑
s=1

exp(−ε
2

4
Cs log n)

�
∑(ne

s

)s
exp(−ε

2

4
Cs log n)

=
∑

(
ne

snε2/4C
)s = o(1).

�

Definition 11.4. A family of bounded degree graphs G1, G2, · · · with number of

vertexes →∞ is called expander family if

lim inf
n→∞

h(Gn) > 0.

We will define Normalized Laplacian of a graph, which is a linear operator on

functions on vertices

C0(G) = {f : V (G)→ R}

Assume that the minimum degree of G satisfies δ(G) ≥ 1.

Define the averaging operator by

A(f)(v) =
1

deg v

∑
u∼v

f(u).

Define the identity operator by

I(f)(v) = f(v).

Then the Laplacian is defined by

4 = I −A.

Remark: Eigenvalues of 4 are 0 ≤ λ1 ≤ λ2 ≤ · · ·λn ≤ 2. Multiplicity of

0-eignevalues is number of connected components of G. If G is connected, λ2 is

spectral gap or algebraic connectivity.

Theorem 11.5 (Hoffman, Kahle, Paquette). There exists C > 0 such that if

p ≤ log n+ C
√

log n log log n

n
,

then Pr(λ2 < 1− ε)→ 0 as n→∞ for any fixed ε > 0.
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12. (Wednesday, September 19)

12.1. Simplicial Complexes. Today’s lecture discussed higher-dimensional ana-

logues of the Erdös-Rényi Theorem. To do so, we must dicuss the appropriate

higher-dimensional extension of a (finite) graph. In this case, the appropriate ex-

tension is an (abstract, finite) simplicial complex.

Definition 12.1. • Again, let [n] = {1, 2, . . . , n}.
• An abstract finite simplicial complex, denoted S, is a collection of nonempty

subsets of [n] with the following two properties.

(1) if σ ∈ S and ∅ 6= τ ⊂ σ, then τ ∈ S.

(2) for all i ∈ N, 1 ≤ i ≤ n, {i} ∈ S.

• Elements of S are termed faces or simplices of S; similarly, if ∅ 6= τ ⊂ σ,

then τ is termed a face or facet of the face σ. The dimension of a face is

one less than its cardinality: if σ ∈ S, dim σ = |σ| − 1. For example, if

{a, b, c} ∈ S, the dimension of that face is 2.

• Define dim S to be max
σ∈S

dim σ.

The above definition is designed to run parallel to the topological definition of

a simplex. For example, if {a, b, c} ∈ S, a, b, and c are thought of as the vertices

of a 2-simplex. In fact, to every face of S we explicitly associate a simplex of the

appropriate dimension: singleton sets are vertices, {a, b} is a line segment, etc. In

particular if dim S = 1, then S can be associated with the graph on the vertex set

[n] with edges corresponding to the 1-cells.

It is important to note (though we do not discuss the details here) that S can

be considered as a topological simplex (a topological space), where requirement 1)

of the definition ensures that the (topological) boundary of any simplex is included

in the set of faces, and the second requirement just ensures that we have all ver-

tices. To create a “geometric realization” of the abstract simplex, one starts with

Rn, with the standard basis vectors {e1, . . . , en}. Then the simplex {i1, . . . , ik}
is realized as the convex hull of the vectors {ei1 , . . . , eik}. For a picture, see Fig-

ure 1. For more details, including the technicality of distinguishing between an

abstract simplicial complex and its geometric realization, see [2]. We will inten-

tionally blur the distinction between abstract complexes and their corresponding

topological complexes.

12.2. (Simplicial, Z/2Z-)Cohomology. Recall that the Erdös-Rényi Theorem

gave a sharp threshold for the connectivity of a graph. To generalize connectivity
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Figure 1. Geometric Realization of some Two-Dimensional Simplices

to higher-dimensional analogues, we first realize connectivity of a graph as a state-

ment about the graph’s (reduced) 0-homology, or equivalently, 0-cohomology.6 For

higher-dimensional variants, we will define a “nice” (simplicial, Z/2Z) cohomology,

and start looking at the higher levels of cohomology.

Definition 12.2. • Let F i(S), i ≥ 1, denote the collection of i-dimensional

faces of S.

• Let Ci(S) denote the vector space of maps F i(S) → Z/2Z. This Z/2Z
vector space is named the set of i-(Z/2Z-)cochains of S.

• Define the Z/2Z-linear map, the coboundary operator, as di : Ci(S) →
Ci+1(S), as follows: if f ∈ Ci(S), and σ ∈ F i+1(S), define dif(σ) =∑

τ a face of σ
σ=τ∪{j} for some j∈σ

f(τ).7 In other words, we just add up f ’s values on all

codimension-1 faces of σ. In practice, the reference to a specific level is

suppressed, and we just write d, not di, when the level of the cochain vector

space is understood.

• Zi is defined to be the kernel of di. di−1 maps into Ci, and the image of

di−1 is termed Bi.

6The equivalence is governed by the “universal coefficient theorem for homology,” described in

[6, p.195].
7In general, powers of −1 according to orientations of the various faces enter into this formula.

One advantage of working in Z/2Z is that (−1) = 1, so no minus signs are necessary.
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Figure 2. Example of the coboundary map

An example is in order. See Figure 2. Looking at the upper-right-hand triangle

above, note that there are two ways to have a function f on 1-cells in the boundary

of a 2-cell such that df maps the 2-cell to 0: to have all the edges go to 0, or to

have two of them going to 0 (since 1 + 1 = 2 = 0 in Z/2Z. In particular, then, it

is likely that the kernel of di is a significant subspace of Ci. The key observation

that enables our proceeding is the following exercise.

Lemma 12.3. Bi ⊂ Zi; that is, d ◦ d = 0.

Proof. Fix f ∈ Ci(S), i ≥ 1; we wish to show that di+1 ◦ dif = 0. By definition,

the first coboundary gives dif(σ) =
∑

τ a face of σ
σ=τ∪{j} for some j∈σ

f(τ). Then applying di+1

gives, for any i+ 2-dimensional face ρ,

di+1(di(f))(ρ) =
∑

σ a face of ρ
ρ=σ∪{k} for some k∈ρ

dif(σ)

=
∑

σ a face of ρ
ρ=σ∪{k} for some k∈ρ

∑
τ a face of σ

σ=τ∪{j} for some j∈σ

f(τ)

Yet note that since σ = ρ \ {k}, we can rewrite “σ = τ ∪ {j} for some j ∈ σ” as

“σ = τ ∪{j} for some j ∈ ρ \ {k}.” The point is not only that τ is a codimension-2
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face of ρ, but that for any codimension-two face τ of ρ, say τ = ρ \ {p, q}, we can

find τ in the final double-summation in two ways: by eliminating p and then q, or

by eliminating q and then p. This happens for every such τ , so in the end

di+1 ◦ di(f)(ρ) =
∑

τ a face of ρ
ρ=σ∪{p,q} for some p,q∈ρ

2f(τ).

Yet 2 = 0 in Z/2Z, so this becomes 0.8 This works for all ρ ∈ F i+2(S), and for all

f ∈ Ci(S), so di+1 ◦ di = 0. �

Since Bi is a sub-vector space of Zi, we can define the ith cohomology group with

Z/2Z coefficients, denoted Hi(S,Z/2Z) or simply Hi, as the quotient vector space

Zi

Bi
=

ker di

Im di−1
.

We leave it as a fact that the cohomology groups are topological invariants; that

is, homeomorphic spaces have the same cohomology groups (in fact, homotopy

equivalent spaces have the same cohomology groups, but this will only concern us

with concrete examples). For details, see Chapter 3 of [6].

The other major property that will concern us is that the (singular) cohomology

map is a contravariant functor; that is, a continuous map X
f−→ Y induces a map

Hi(Y )
f∗−→ Hi(X) by the definition f∗ : φ→ φ ◦ f . Further, with (g ◦ f)∗ = f∗ ◦ g∗

and (IdX)∗ = IdHi(X), where IdX is the identity on X.

For our purposes, we need only concern ourselves with the dimension of the

homology group dim Hi(S,Z/2Z).9 Let βi(S) = βi := dim Hi(S,Z/2Z) denote the

ith (Z/2Z) Betti number of the simplicial complex S.

Remark 12.4. A circle, S1, has β0 = 1 and β1 = 1, and all other Betti numbers

are 0. A sphere, S2, has β0 = 1, β1 = 0, and β2 = 1, and all other Betti numbers

are 0. More generally, the d-dimensional sphere Sd ⊂ Rd+1 has β0 = 1 and βd = 1

as the only nonzero Betti numbers.

The sphere is a good intuitive picture of what objects correspond to the sim-

plest nontrivial d-dimensional homology groups; very roughtly speaking, βd counts

the number of d-dimensional holes in the topological space modeled by a simplicial

complex.

8In the non-Z/2Z case, the trick is that the different orders of removing the vertices also shifts

the sign of the orientation by one, so that the two copies of f(τ) have competing signs and cancel

in that way.
9This is emphatically not the case in most algebraic topology, where various long exact se-

quences of (co)homology groups become very important.



36 MATTHEW KAHLE

We now show that remarks about the connectedness of a graph (e.g., the conclu-

sions of the Erdös-Rényi theorem) are equivalent to statements about cohomology

groups.

Lemma 12.5. β0 counts the number of connected components. Hence, S is con-

nected if and only if β0(S) = 1.10

Proof. There is no (−1)-st level in convential cohomology; or, to be more precise,

we define it to be the single-point vector space {0}. Therefore, B0 = {0} (since the

boundary map is a vector space homomorphism, hence sends 0 ∈ C−1 to 0 ∈ C0).

Therefore, H0 is equated with Z0, the kernel of the map d0. Yet a map f on

vertices, mapping each vertex to 0 or 1, is transformed by the map df ∈ C1 such

that for all edges e = {i, j} in the set,

df(e) = f(i) + f(j) =

{
0, if f(i) ∼= f(j) mod 2

1, if f(i) 6∼= f(j) mod 2

Therefore, any element f of the kernel Z0 must have identical inputs on the vertices

of every edge. If f is a nonzero element of the kernel, it must send at least one

vertex {i} to 1. Yet for any j adjacent to i, df({i, j) = 0 (by f ∈ Z0), but

df({i, j) = f(i) + f(j) = 1 + f(j), so 1 + f(j) = 0 mod 2 and hence f(j) = 1.

This happens similarly for all k adjacent to j, and so forth, so f must send the

entire connected component of i to 1. It can, however, send all other vertices

to 0. Therefore, for each connected component α of S, there is a map fα ∈ Z0

sending all vertices in α to 1 and all vertices in other components to 0. These are

clearly linearly independent functions, having disjoint support, and by the fact that

elements of Z0 are constant on connected components, they span Z0. Therefore,

dim(Z0) = dim(H0) = β0 is equal to the number of connected components. �

12.3. Reduced Homology Groups. The above work means that we can rephrase

the topological property of connectivity in terms of a specific topological invariant,

simplicial cohomology, which is “multilayered,” hence admits generalization. It is

not intuitively clear, however, where to go from here. In particular, our example

of spheres demonstrates that “most” homology groups of a simple space are 0-

dimensional, not 1-dimensional. Also, if we are thinking algebraically, the simplest

results should be the vanishing of such-and-such an invariant. We would like a

situation where connectivity should correspond to β0 being a trivial element of Z,

namely 0. We do not wish, however, to change any of the other Betti numbers.11

10The proof is optional.
11The uninterested reader may now skip to the next subsection.
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Therefore, we would like to define an altered set of Betti numbers β̃i, where

β̃i =

{
βi, if i ≥ 1

β0 − 1 if i = 0

To accomplish this, in the abstract simplicial complex, we now allow the empty set

to be in our collection of subsets of [n], and modify the closure-under-subsets rule to

eliminate the ∅ 6= τ criterion. Since we have already included all vertices, and the

∅ ⊂ {i} for any i, the empty set is now a guaranteed member of our revised (which,

for reasons that will become clear later, we call “reduced”) simplicial complex. We

declare dim(∅) = 0, so that the empty set is a new codimension-1 face of every

vertex.

Pushing this forward to the level of cochains, we may now define F−1 = {∅}
(the set whose sole element is the empty set); thus, C−1 is the set of maps {∅} →
Z/2Z, namely f1 : ∅ 7→ 1 and f0 : ∅ 7→ 0. Thus, this is a 1-dimensional Z/2Z-

vector space. Therefore, d−1 : C−1 → C0 maps f0 to the 0-map, but the map f1

has, for any i ∈ [n], d−1f1({i}) = f1(∅) = 1, and hence is the constant-1 map.12

Hence, B−1 is now 1-dimensional, so the homology group Ĥ0 =
Z0

B̂−1
is reduced

in dimension by 1, since we lose one degree of freedom by identifying maps that

differ by a constant. Hence, we have defined the reduced homology groups, where

Ĥ0 is adjusted as above, and nothing happens to the other parts of the cochain

complexes, etc. Therefore, we have successfully defined a reduction in homology

groups for which connectivity corresponds to the vanishing of some topological

invariant.

Remark 12.6. β̃0(S) = 0 if and only if S is connected, for S any simplicial

complex.

Therefore, we are now in a natural enough setting that we are able to fruitfully

generalize the Erdös-Rényi Theorem by focusing our attention on β1, and asking

when it vanishes.

12.4. Random 2-Dimensional Simplicial Complexes. Following Linial and

Meshulam [8], we now create a model of random 2-complexes. In order to avoid

undue complexity, the simplest models should have a connected graph as their 1-

skeleton (the collection of vertices and edges), since otherwise we have to start

worrying about the interactions between the 0th and 1st cohomology groups.

Definition 12.7. Define Y (n, p) to be the 2-dimensional simplicial complex on the

vertex set [n], where all vertices and edges (all sets of the form {i} or {i, j}) are

12More generally, for any coefficient group G, d−1(C−1(X,G)) consists of all the constant

maps from vertices to G; see, e.g., [6, p. 199].
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included. For the

(
[n]

3

)
faces {i, j, k}, we add them to the simplex with probability

p, jointly independently.

The paper [8] studies H1(Y (n, p);Z/2Z), and in so doing gives guidance on the

behavior of β1. The extreme case p = 0 corresponds to the case of an very large β1,

since the lack of two-cells means that every edge can create its own cocycle (since

C2 is empty and hence every function in C1 has coboundary map 0), whereas the

set of coboundaries is fixed to those functions that give either 0 or 2 1’s to the edges

of any given triangle (as can be seen by case-by-case enumeration). At the other

extreme, p = 1 causes H1(Y (n, 1),Z/2Z) = 0, because f is a cocycle now if and

only if the number of 1’s f assigns to each edge of a triangle must be even (since

the triangle’s value in df equals the mod-2 sum of the values of the edges), hence 0

or 2, and hence a coboundary.

Lemma 12.8. The property of having a trivial H1, i.e., H1(Y (n, p),Z/2Z) = 0,

is a monotone-increasing property in p = p(n).

Proof. Exercise. �

We are now in a position to state a major theorem of Linial and Meshulam.

Theorem 12.9 ([8]).

Pr[H1(Y (n, p);Z/2Z) = 0] =

{
1, p ≥ 2 log(n)+ω(1)

n

0, p ≤ 2 log(n)−ω(1)
n

Compare this to the Erdös-Rényi Theorem:

Pr[H̃0(G(n, p);Z/2Z) = 0] =

{
1, p ≥ 1 log(n)+ω(1)

n

0, p ≤ 1 log(n)−ω(1)
n

There are similarities with parts of the proof, not just the statement. Recall that

the final obstruction to the connectivity of G(n, p) was isolated vertices (because

asymptotically almost surely, in the first case, the components of size less than or

equal to
⌊n

2

⌋
disappeared, so that we had a large component and isolated vertices).

Similarly, we want to show in the present case that if there are any isolated edges

(i.e., an edge with no incident triangles), then H1 6= 0 and β1 > 0.

We note that any given edge uses two vertices, and hence there are n− 2 other

vertices that combine with the given edge to give a triangle of edges; the face for

that triangle is not added with probability (1 − p). There are
(
n
2

)
such edges;

hence, by linearity of expectation, E(# isolated edges) =
(
n
2

)
(1−p)n−2. Therefore,
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if p � 2 log(n) + c

n
, then we have that

E(#isolatededges) � n2

2
e−

2 log(n)+c
n (n−2)

� n2

2
e−(2 log(n)+c)

� n2

n2
∗ 1

2
e−c

=
1

2
e−c.

Note that each isolated edge indeed generates some 1-cochains that are not 1-

coboundaries. More specifically, taking the map f that takes the value 1 on an

isolated edge e = {i, j} and 0 on all other edges gives a cocycle (since there are

no adjacent triangles, so the coboundary of this map is necessarily 0). It is not,

however, a 1-coboundary (since dg = f for g ∈ C0(Y (n, p),Z/2Z) would require

that g assign a value of 1 to one of the endpoints of e (say i), and 0 to the other

endpoint j. Any other vertex k must be assigned a 1 so that {i, k} gets mapped

to 0, but simultaneously must be assigned a 0 so that {j, k} gets mapped to 0.

Therefore, f is not a coboundary. Therefore, H1(Y (n, p),Z/2Z) 6= 0 in such a case.

Conjecture 12.10. If p = 2 logn+c
n , then

β1(Y (n, p),Z/2Z)
D−→ Po

(
1

2
e−c
)
,

where
D−→ denotes convergence in distribution.

The above conjecture is in fact true, but is stated as a conjecture because for

random d-dimensional simplicial complexes analogous to the above two-dimensional

case, the analogous statement for βd is only known for large d. Note, however,

that this is an extension of a preliminary result used in proving the Erdös-Rényi

Theorem:

β̃0(G(n, p))
D−→ Po

(
e−c
)
,

when p =
log n+ c

n
.
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13. (Friday, September 21)

First, some thoughts about homology versus cohomology. Sometimes homology

is easier to think about.

13.1. H0(X,Z/2) measures the number of connected components of a

graph.

Definition 13.1.

(1) The zeroth homology group with Z/2 coefficients H0(X,Z/2) is a (Z/2)-

vector space whose dimension is the number of connected components of

X.

(2) The zeroth reduced homology group H̃0 is a (Z/2)-vector space whose di-

mension is the number of connected components of X minus one.

(3) A 0-chain is a function φ : V → Z/2.
(4) A 0-cycle φ is a function in the kernel the boundary operator, i.e. dφ =

0. In reduced homology, this is equivalent to a function supported on an

even number of vertices. Then notice that the vector space of all cycles is

generated by functions supported on pairs of vertices.

(5) By definition, H̃0 = cycles/boundaries.

So we say H̃0 = 0 if and only if every cycle is a boundary i.e., every pair of

vertices is connected by a path. It turns out that H̃0 = 0⇔ H̃0 = 0. But when we

proved Erdős–Rényi theorem, we actually proved the cohomological version H̃0 = 0,

i.e. every cocycle is a coboundary.

The only coboundary is the coboundary of the empty set, defined to be the

constant function φ : V (H) → 1. A cocycle is a collection of vertices so that

every edge meets an even number of them, or equivalently, a union of connected

components generated by connected components. So we see that “every cocycle is

a coboundary” really is equivalent to “H is connected.”

To prove the Erdős–Rényi theorem, we show that for φ = collection of vertices,

Pr(φ is nontrivial cocycle) is small.

Pr(φ is nontrivial cocycle) ≤ kk−2pk−1(1− p)k(n−k),

k(n− k) is the size of dφ in complex graph.

13.2. H1(G), G a connected graph.

Definition 13.2.

(1) Cycles = collection of edges meeting every vertex in an even number of

edges. generated by primitive cycles.

(2) 1-coboundaries = cut spanning complete bipartite graph.
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(3) 1-cocyles=collection of edges meeting every triangle in an even number.

H1 = 0 means every cycle is boundary means no cycles. In a 2-dimensional

complex H1 = 0 means every cycle is a boundary. It is known that for 2-dimensional

simplicial complex Y , H1(Y,Z/2) ≡ H1(Y,Z/2).

Linial–Meshulam considers the case for 2-dim Z/2 coefficients.

Meshulam–Wallach: d-dim, Z/m coefficients.

Let 4(2)
n be a 2-skeleton of simplex on n-vertices. i.e., n vertices,

(
n
2

)
edges,

(
n
3

)
faces.

Let φ ∈ C1(4(2)
n ),

b(φ) = |supp dφ| = number of triangles with an odd number of edges from φ.

w(φ) = min(suppφ+ dτ), τ ∈ C0.

Theorem 13.3 (Meshulam-Wallach). b(φ) ≥ n
3w(φ). (co-isoperimetric inequal-

ity).

Pr[∃ any non-trivial cocyles] ≤
(n2)/2∑
k=1

((n
2

)
k

)
(1− p)n3 k.

Exercise 13.4. Show that if

p ≥ 6 log n+ ω(1)

n

then

Pr[∃ any non-trivial cocyles]→ 0.

To get all the way down to the true threshold of

p =
2 log n

n

requires careful cocyle counting.

See also Hoffman, Kahle, Paquette’s recent preprint “A sharp threshold for Kazh-

dan’s property (T )” (arXiv:1201.0425), where spectral analogues of the Linial–

Meshulam theorem are discussed, with applications to geometric group theory.
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14. (Monday, September 24)

This lecture discusses the evolution of G(n, p) as a process with varying p, and in

particular the phase transition that occurs around p = 1
n . We begin by considering

p = O(n−1−ε) for fixed ε > 0:

Proposition 14.1. Let k > 0 be fixed and p = o(n−(k+1)/k); then w.h.p. all

connected components are of order at most k.

Proof. For k = 1: p = o(n−2) and E(e) = p
(
n
2

)
= O(pn2) = o(1), so w.h.p. there

are no edges.

For k = 2: Any component of order 3 contains a path of length 2, and

E(#2-paths) = Θ(n3p2) = o(1),

so w.h.p. any component has order at most 2.

For k arbitrary, there are only finitely many connected graphs of order k + 1,

each of which has at least k edges. Thus the expected number of copies of any

particular connected graph with k+ 1 vertices is O(nk+1pk) = o(1) by assumption,

and summing only finitely many (as k is fixed) is once again o(1). �

Thus if p is bounded by any power of n less than n−1, G(n, p) has only very small

components (i.e. of bounded size). We can also establish how many cycles G(n, p) is

likely to have. For fixed k, the threshold for finding a cycle Ck is p = n−v/e = n−1.

By the same logic as the proposition above, if p = o(n−1−ε) then w.h.p. G(n, p) is

a forest (a collection of trees). We can say more:

Proposition 14.2. If p = o(n−1), then G(n, p) is a forest w.h.p.

Proof. Let k ≥ 3 be a fixed integer. Then the expected number of Ck subgraphs in

G(n, p) is nkpk/2k, since the automorphism group of Ck is the dihedral group D2k.

Now, write p = cn−1; then

E(# cycles) =

∞∑
k=3

nkpk

2k
≤
∞∑
k=3

ck

2k
≤ c3 + c4 + c5 + · · ·

Since p = o(n−1), we can take c < 1 and let c → 0. Then the geometric series

above converges to c3

1−c → 0. So w.h.p. the expected number of cycles is 0, meaning

G(n, p) is a forest. �

In fact, if p = c/n with c > 1, then w.h.p. G(n, p) contains a cycle. Moreover, it

can be proved that the probability of finding a cycle approaches a constant for c = 1,

and the probability that the first cycle is Ck approaches a limiting distribution which

is bounded away from zero for all k.

Next is the case where p � n−1; in particular, we examine p ≥ n−1/2+ε for

positive ε:
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Proposition 14.3. If p ≥ n−1/2+ε, then w.h.p. G(n, p) has diameter at most 2.

Proof. In fact it is only necessary to assume that p ≥
(
C log n+ ω(1)

n

)1/2

for

some fixed C > 0 (to be determined). With that assumption, for any two vertices

x, y ∈ [n],

E(# paths{x, v, y}) = (n− 2)p2 = (n− 2)

(
C log n+ ω(1)

n

)
≥ C log n

Since there are O(n2) pairs of points x, y, we need Pr[no path{x, v, y}] = o(n−2).

The number of paths of length 2 from x to y is a binomial random variable Bin(n−
2, p2). The relevant Chernoff bound is Pr[X ≤ (1− ε)E[X]] ≤ exp(E[X]ε2/2). Fix

ε = 1/2; then

Pr[no path{x, v, y}] ≤ exp(−1

8
C log n) = n−C/8

so if C > 16, this probability is o(n−2), as desired. �

Exercise 14.4. Show that if p ≥
(

2 log n+ ω(1)

n

)1/2

, then the diameter of G(n, p)

is ≤ 2 w.h.p.

To determine whether G(n, p) has diameter at most k, we apply the same prin-

ciple as above: fix vertices x and y. Then E[# paths of lengthk] is of order nk−1pk.

We would expect that if nk−1pk → ∞ at least as fast as log n, then w.h.p. every

pair of vertices in G(n, p) is joined by a path of length at most k:

Proposition 14.5. If p ≥
(
Ck log n

n

)k/(k+1)

, then w.h.p. diam(G(n, p)) ≤ k + 1.

Note, however, that for k > 1, the paths between x and y are no longer described

by a binomial distribution. Instead, the appropriate tools are Jansen inequalities,

which stand in for Chernoff bounds.

Proposition 14.6. Let p = c logn
n . If 1

2 < c ≤ 1, then w.h.p. G(n, p) consists of a

unique giant component of order (1− o(1))n and isolated vertices.

Exercise 14.7. Show that if p = c logn
n , then w.h.p. G(n, p) consists of a giant

component of order (1− o(1))n and components of order ≤ k, where k depends on

c.
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15. (Wednesday, September 26)

Cycles in G(n, p)

We have showed that if p = o(1/n), then whp there is no cycle in G(n, p). What

about for p = c/n, c ∈ (0,∞)?

For k ≥ 3 fixed,

E[number of cycles in G(n, p)] ∼ nkpk

2k
=
ck

2k

We have showed that Xk → Po
(
ck

2k

)
where Xk denotes the number of k-cycles in

G(n, p). It can be shown for any fixed k that

(X3, X4, . . . , Xk)→
(

Po

(
c3

6

)
,Po

(
c4

8

)
, . . . ,Po

(
ck

2k

))
where the Poisson random variables are independent (See Chapter 6, JLR). Then,

Pr[there is no cycle of length ≤M ]→ exp

(
−c

3

6
− c4

8
− · · · − cM

2M

)
.

If c < 1, then the sum c3

6 + c4

8 + · · · converges and we would guess that

Pr[no cycles in G(n, p)]→ exp

(
−c

3

6
− c4

8
− . . .

)
.

For c = 1, the sum 1/6 + 1/8 + · · · diverges, and the probability that there is no

cycle approaches 0 in this case.

Question: If p = 1/n, how fast does Pr[no cycle in G(n, p)]→ 0?

Answer: Pr[ no cycle in G(n, 1/n)] ∼ Cn−1/6 where

C =
1√
2π
e3/4

∫ ∞
0

e−4t3/2 cos
(

4t3/2
)
.

Let L+
n be the length of the first cycle in {G(n,m)}(

n
2)
m=0.

Theorem 15.1.

Pr[L+
n = `]→ 1

2

∫ 1

0

x`−1(1− x)1/2ex/2+x2/4dx

A consequence of this theorem is that, we have E[L+
n ] � n1/6 even though

Pr[L+
n ≥ ω]→ 0 as ω →∞ however slowly.

Diameter of G(n, p)

Janson Inequalities [Reference: Alon & Spencer, Chapter 8 ]

Notation:

• Ω is a finite universal set,
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• R is a random subset of Ω given by Pr[r ∈ R] = pr. These events are

mutually independent over r ∈ Ω,

• {Ai}i∈I is a collection of subsets where I is a finite index set,

• Bi is the event that Ai ⊂ R, i.e., when we flip a coin for each r ∈ Ω, Bi is

the event that all the coins for r ∈ Ai comes up heads.

• Xi is the indicator random variable for Bi and X =
∑
i∈I Xi,

• For i, j ∈ I, we write i ∼ j if i 6= j and Ai ∩ Aj = ∅ (hence Bi and Bj are

independent).

Note: X = 0 ⇐⇒ none of the events Bi occur

Theorem 15.2 (Janson Inequality). Let µ = E[X] and ∆ =
∑
i∼j Pr[Bi and Bj ].

Then,

Pr[X = 0] ≤ e−µ+∆/2.

Example I =
(

[n]
3

)
and Ai is the triangle for i ∈ I. For p = c/n, we have

µ→ c3/6. Check that ∆ = o(1). Then,

Pr[no triangles in G(n, p)] ≤ e−c
3/6+o(1).

This theorem often gives some bound but if µ � ∆, maybe not the best one.If

∆ ≥ 2µ, obviously it is useless.

Theorem 15.3 (Extended Janson Inequality). Under additional assumption that

∆ ≥ µ, we have

Pr[X = 0] ≤ e−µ
2/2∆.

Claim n−2/3 is (roughly) the threshold for the event {diameter of G(n, p) ≤ 3}.
Let p3n2 ≥ C log(n), (C is a constant to be determined).

Given vertices x and y, the expected number of paths of length 3 with end

vertices x and y is (n − 2)(n − 3)p3 ∼ n2p3. Hence µ ∼ n2p3. We proved the

following lemma previously.

Lemma 15.4. Let et be the minimum number of edges in a union of (not all vertex

disjoint) k copies of strictly balanced graph G on t vertices. Then et > mG · t.

Let i be the number of vertices in intersection of two such paths. Then either

i = 1 or i = 2.

Exercise 15.5. Show that n−k/(k+1) is (roughly) threshold for diameter ≤ k + 1.
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16. (Friday, September 28)

Example Let X be the number of triangles in G(n, p) for p = c
n then µ → c3

6

and ∆ = o(1) So Pr[X = 0] ≤ e−c
3/6+o(1) by Janson. In general µ = n3p3

6 and

∆ = n4p5

4 . Once p � n−1/2 we have ∆ > µ so for example for p = 1
2 we have

Pr[X = 0] ≤ e−cn2

by extended Janson.

Example Consider paths of length k + 1 from x ↔ y. Set µ = nkpk+1 =

2 log(n) +ω(1). In this case ∆ = o(1). Observe that two distinct paths x↔ y that

intersect in i vertices intersect in at most i edges. Then the largest contribution

to ∆ is n2k−1p2k+1 when i = 1. Then we conclude if nkpk+1 ≥ (2 + ε) log(n) for

ε > 0 fixed then with high probability the diameter of G(n, p) is less than or equal

to k + 1.

Random Regular Graphs and Expanders

Note once p � log(n)
n then with high probability deg(v) ≈ (n − 1)p for every

vertex v in G(n, p) by Chernoff bounds. However, with high probability G(n, p) is

not normal and the average degree (n− 1)p→∞.

We want to have a model to generate regular random graphs. Our idea here is

to construct them out of permutations. Begin with a permutation σ ∈ Sn chosen

uniformly. Then σ : [n] → [n] bijectively. We can then think of σ as a ran-

dom 2 regular graph. The two problems we encounter are fixed points of σ and

transpositions. Now E[#of fixed points] = 1 and Pr[no fixed points] → 1
e . So it’s

true that the number of fixed points approaches in distribution to P0(1). Now

E[#of transpositions] =
(
n
2

)
1

n(n−1) = 1
2 . So we have a small number of bad events

that we will be able to control for.

Take σ1, σ2, . . . , σl to give a 2l-regular graph on [n]. There are two types of bad

events we may encounter in this construction. The first happens when σi(x) = σj(x)

for i 6= j and the second happens when σi(x) = σ−1
i (x) for i 6= j. Note by

the previous discussion the expected number of bad events tends to a constant

as n → ∞. Using Poisson approximation one can show that there is a positive

probability of having no bad events. Thus to create our 2l-regular graph we just

pick our permutations until we have no bad events.

Now for some fixed l large enough we want show that with high probability our

random regular graph is an expander. That is we wish to show that the Cheeger

number h(G) > c. Recall h(G) = min
|S|≤n/2

#e(S,S̄)
|S| . It will suffice to show for all

F ⊆ [n] with |F | ≤ n
2 that |N(F )| ≥ (1 + c′)|F | for some c′ > 0. This will exclude

the possibility that there exists F ⊆ F ′ ⊆ [n] with |F ′| ≤ (1 + c′)|F | and with

all edges in F ′ ending up in F . Let r = |F |, r + r′ = |F ′|, and r′ = bc′rc + 1.

Then for each r there are n!
r!r′!(n−r−r′)! ≤

nr+r
′

(r+r′)!c
r choices for F and F ′. Now
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Pr[all edges of F ′ end in F ] =
(r+r

′
r )

(nr)
≤
(
r+r′

n

)r
. Then we know the total probabil-

ity of failure for some choice of F and F ′ is at most
(
r+r′

n

)rl
. So by Sterling’s ap-

proximation the total failure probability is bounded by

bn/2c∑
r=1

o(1)r
(
r + r′

n

)lr−r−r′
.

So for small enough c we have that r+r′

n ≤ 0.6 and so for large enough l the whole

sum goes to o(1).

Definition 16.1. Given a graph G(V,E), S ⊆ V is a vertex cut set if G(V \S,E)

is not connected. A graph G is k-connected if there is no cut set of size k− 1. The

connectivity number of G denoted K(G) = max{k : G is k-connected}.

Note that we know the threshold for 1-connectedness in G(n, p) is p = log(n)
n .

We will see that the threshold for k-connectedness is p = log(n)+(k−1) log(log(n))
n .

Theorem 16.2. Let p = log(n)+(k−1) log(log(n))
n . Then

Pr[G(n, p) is k-connected]→


0 if xn → −∞
1 if xn →∞
ee
c/(k+1)! if xn → c

Note that the probability of G(n, p) being k-connected is approximately the

probability that G(n, p) has no vertex of degree k − 1.
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17. (Monday, October 8)

17.1. The phase transition in G(n, p). Very roughly, set p = c
n , where c ∈ (0,∞)

is constant.

• If c < 1, then w.h.p. largest component has order O(log n).

• If c = 1, then w.h.p. largest component has order O(n2/3).

• If c > 1, then w.h.p. largest component has order ≥ λn, where λ = λ(c).

(aka giant component)

Erdos and Renyi called this a double jump.

Now let’s state the theorem in detail following Alon–Spencer. First some nota-

tion:

(1) A connected component is said to have complexity e − v + 1. (eg: a tree

has complexity 0, a unicycle has complexity 1)

(2) Ci = #i-th largest component, Li = # vertices of Ci. (L1 =size of largest

component)

Now the theorem in five parts:

(1) Very subcritical (p = c
n , c < 1)

• All components are trees or unicyclic

• L1 = Θ(log n)

• Lk ∼ L1 for every fixed k

(2) Barely subcritical (p = 1−ε
n , ε = λn−1/3 and assume ε→ 0, λ→∞)

• All components are trees or unicyclic

• L1 = Θ(ε−2 log λ)

• Lk ∼ L1 for every fixed k

(3) Critical (p = 1−ε
n , ε = λn−1/3 where λ ∈ (−∞,∞) is constant)

• Largest k components (k fixed), all have size Lk = Θ(n2/3)

• Parametrizing, Lk = ckn
2/3 and dk = complexity(ck); then there is a

nontrivial limiting point distribution for (c1, c2, . . . , ck, d1, . . . , dk)

(4) Barely supercritical (p = 1+ε
n , ε = λn−1/3 and assume ε→ 0, λ→∞)

• L1 ∼ 2εn

• complexity(C1)→∞
• All other components are trees or unicyclic

• L2 = Θ(ε−2 log λ) = Θ(n2/3λ−2 log λ) (Note L1

L2
→∞)

(5) Very supercritical (p = c
n , c > 1)

• L1 ∼ yn where y = y(c)

• complexity(C1)→∞
• All other components are trees or unicyclic

• L2 = Θ(log n)
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17.2. GALTON-WATSON process. Let X be a distribution on Z≥0. Set Z0 =

1. Recursively define Zn = sum of Zn−1 i.i.d. copies of X, for n ≥ 1. (in other

words, X-offspring distribution, Z0-root of a tree, Zn-size of n-th generation)

Examples:

(1) P(X = c) = 1. Then, Zn = 0 if c = 0 and Zn > 0 if c > 0.

(2) P(X = 0) = q, P(X = m) = p ; p+ q = 1.

Question: Does this process continue forever?

Answer: pX -extinction probability = limn→∞ P(Zn = 0), and if pX < 1,

the process continues forever with positive probability.

Probability generating function of X: f(x) = fX(x) :=
∑∞
i=0 P(X = i)xi. (eg:

fX(x) = q + px).

Theorem 17.1. (1) If EX ≤ 1, then we have pX = 1 (except the degenerate

case P(X = 1) = 1)

(2) If EX > 1 and P(X = 0) > 0, then pX = x0 where x0 is the unique solution

of f(X) = X in (0, 1).

Continuing on eg:

fX(x) = q + pxm, EX = mp; then pX = 1 if mp ≤ 1 and pX < 1 if mp > 1

Two ancient references: ”Probability problems in nuclear chemistry”, Schrodinger

1945, ”Survival of family names”, Galton, Watson (1874)
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18. (Wednesday, October 10)

Let v0 ∈ [n] in G(n, p). Explore as follows:

Let v1, . . . , vm be neighbors of v0 in G(n, p). Mark v0 as saturated.

Let v11, v12, . . . be neighbors of v1 in [n]\{v0}. Mark v1 as saturated.

Let Si be the set of vertices that are labelled, and i + 1 is the smallest

non-saturated vertex. Look for neighbors of vi+1 to [n]\Si.

Equivalent Galton-Watson process: Z0 = 1, Zn+1 = Zn + X − 1, where Zn ∼
{seen}\{saturated} and X is a RV on Z≥0. Exploring G(n, p), Xi = #new neigh-

bors at step i = Bin(n− |Si−1|, p).
Note that if Si is small compared to n, Xi ∼ Bin(n, p).

(*) Also note that, if p = c
n , c < 1, then in GW branching process with offspring

distribution Bin(n, p), pX = 1 (extinction probablity) and hence we expect

that all components are small.

(*) If p = c
n , c > 1, then pX < 1 and we might expect large components to

appear.

Theorem 18.1. Let p = c
n , c < 1. Then whp,

(1) L1 ≤ 3
(1−c)2 log n

(2) All components are trees or unicyclic.

We need one more tool: Chernoff bound revisited; Let X = Bin(N, p) and

µ = Np. Then P(X ≥ µ+ t) ≤ exp
(

−t2
2(µ+t/3)

)
and P(X ≤ µ− t) ≤ exp

(
−t2
2µ

)
.

Proof of (1). Let v ∈ [n]. Explore G(n, p). Let Xi = #vertices discovered at step

i.

P(v belongs to a component of size ≥ k = k(n)) ≤ P(

k−1∑
i=1

Xi ≥ k − 1)

then bound with Xi ≤ X+
i ∼ Bin(n, p),

≤ P(

k−1∑
i=1

X+
i ≥ −1)

≤ P(Bin(kn, p) ≥ k − 1)

Now set p = c
n , c < 1 and k ≥ 3

(1−c)2 log n. Take N = kn.

E[Bin(kn, p)] = knp ≥ 3 log n

(1− c)2
c
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P(Bin(kn, p) ≥ k − 1) ≤ exp

(
−t2

2(kµ+ t/3)

)
where µ = ck, t = (1− c)k − 1

≤ exp

(
−((1− c)k − 1)2

2(ck + (1−c)k
3 )

)

≤ exp

(
−(1− c)2

2
k

)
= O(n−3/2) = o(n−1)

Summing over all possible choices for v

P
(
∃ component of size ≥ 3 log n

(1− c)2

)
≤ O(n−0.5)→ 0

�

Proof of (2). By (1), WLOG we may assume that L1 = O(log n).

Exercise 18.2. Any connected graph with e − v + 1 ≥ 2 contains a subgraph (i)

two cycles connected by a path, (ii) shares a vertex, (iii) shares common edge(s).

For such a connected graph,

E(#copies in G(n, p)) ≤ nk+l+mpk+l+m+1 ≤ (np)k+l+mp ≤ ck+l+mp = O(n−1).

We may assume k, l,m ≤ O(log n), so #choices= O((log n)3)

Whp all components have e− v + 1 < 2, hence either is a tree or unicyclic.

Exercise 18.3. If X = Po(c), c > 1, what is pX?

�
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19. (Friday, October 12)

Consider X ∈ P0(c) for c > 1. We seek to calculate ρX , the extinction probability

for the branching process determined by X. We have fX(x) =

∞∑
i=0

cixi

i!
e−c =

e−xecx = ec(1−x). So ρX is the unique solution to x = ec(x−1) in the interval (0, 1).

Let y = 1−x, then our equation becomes 1− y = ecy. Then ρX = 1−β where β is

the unique solution in (0, 1) to β+e−cβ = 1. Note that β is the survival probability

of our branching process. Also note that as c→∞ we have β → 1.

Now let Yn ∈ Bin(n, p) for p = c
n and c > 1. Consider a sequence of branching

processes determined by Yn. We seek ρYn . Then we have fYn(x) =

n∑
i=0

(
n

i

)
pi(1−

p)n−ixi =

n∑
i=0

(
n

i

)
(px)i(1 − p)n−i = (1 − p + px)n. Remember p = c

n and let

n → ∞, then fYn(x) → ec(x−1) for every fixed x so ρYn → 1 − β where β = β(c)

is the unique solution of β + e−cβ = 1 in the interval (0, 1). In fact the preceding

argument holds if we merely have pn→ c as n→∞ for c > 1 fixed.

Theorem 19.1. If p = c
n for c > 1 constant, then with high probability L1 ≈ βn

where β ∈ (0, 1) is the unique solution to β + e−cβ = 1 and L2 ≤ 16c
(1−c)2 log(n).

To prove this we’ll let k− = 16c
(1−c)2 log(n) and k+ = n2/3. We want to show that

G(n, p) has no components of order k for k− ≤ k ≤ k+. To do this we consider a

searching process beginning at a single vertex. Either this process ends in fewer than

k− steps or at the kth step there are at least (c−1)k
2 unsaturated vertices. Let Xi be

the number of vertices found at step i, and let X−i ∈ Bin(n − c+1
2 k+, p) each X−i

i.i.d.. Note in order to check if the process starting at v produces after step k at least
(c−1)k

2 unsaturated vertices we need only identify k+
(c−1)k

2 = (c+1)k
2 vertices of this

component. Now Pr
[
after k steps we have fewer than (c−1)k

2 unsaturated verticies
]
≤

Pr

[
k∑
i=1

X−i ≤ k − 1 +
(c− 1)k

2

]
≈ Bin(kn, cn ) where

k∑
i=1

X−i = Bin

(
k(n− c+ 1

2
k+),

c

n

)
.

Recall now for X ∈ Bin(N, p) we have µ = Np and Pr(X < µ − t) ≤ e−t
2/2µ. In

our case µ = kn cn = kc and t = kc − (c+1)k
2 = k(c−1)

2 . Then Pr[claim fails] ≤
k+∑

k=k−

e−((c−1)k)2/8kc =

k+∑
k=k−

e−(c−1)2k/9c ≤ k + e−(c−1)2k−/9c. This simplifies to

n2/3n−16/9.

However this is only for v a vertex in an intermediate size component. Summing

over all vertices we have an upper bound on the number of intermediate size compo-

nents nn2/3n−16/9 = n−1/9 → 0 as n→∞. Next we will show that there is at most

one component of size at least k+. Suppose the exploring processes starting with v′
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and v′′ both result in a component of size at least k+. By the previous argument we

will have at least (c−1)k
2 unsaturated vertices so Pr[no edges between V ′ and V ′′] ≤

(1− p)(c−1)2k2/4 where V ′ is the unsaturated vertices for the process starting at v′

and the same for V ′′ and v′′. However this probability is (1 − c
n ) < e−c/n so this

probability is at most e−c(c−1)2n1/3/4 = o(n−2) → 0 so there is at most one large

component.

Now let ρ = ρ(n, p) be the probability that a vertex v is in a small component.

We have ρ(n, p) ≤ ρX′ where X ′ ∈ Bin(n − k−, p). On the other hand ρX′′ +

o(1) ≤ ρ(n, p) where X ′′ ∈ Bin(n, p). Both ρX′ and ρX′′ tend to 1 − β where

β + e−cβ = 1. So we also have ρ(n, p) → 1 − β. Now let Y be the number of

vertices in small components. Then E[Y ] ≈ (1 − β)n. In fact it can be show that

E[Y 2] = (1 + o(1))E[Y ]2 and E[Y 2] = n2ρ(n, p)ρ(n − O(k), p). So by Chebyshev’s

inequality, with high probability Y ≈ E[Y ]. Then by the second moment method

the theorem holds.
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20. Monday, October 22

There are many other kinds of random graphs.

• Bernoulli random subgraphs of non-complete graphs

• Sequence of finite graphs Gi with V (Gi)→∞
• Infinite graphs, eg. lattice, branching tree, Cayley graphs of an infinite

group

• Random regular graphs

• Uniform spanning trees

We are especially interested in random geometric graphs.

20.1. Random geometric graphs. (Ref: M. Penrose: Random Geometric Graphs)

Definition 20.1. Fix d ≥ 2, take n points iid in Rd according to your favorite

distribution, eg. Gaussian, or uniform on a convex body. These n points are your

vertices. There is an edge between two vertices x and y if the distance between them

is less than r = r(n), that is d(x, y) < r. If there is an edge between x and y we

write x ∼ y. This random graph is sometimes denoted by G(Xn; r).

Remark 20.2. In the graph above, edge events are not independent.

Pr[y ∼ z|x ∼ y, x ∼ z] ≥ Pr[y ∼ z].

Exercise 20.3. These edges are pairwise independent.

Definition 20.4. Instead of Xn = {n points in Rd}, take Poisson point process

for vertices.

Poisson Process: Continuous time counting process, a stochastic process {N(t); t ≥
0} such that

• N(t) ≥ 0

• N(t) is an integer

• If s ≤ t, then N(s) ≤ N(t); N(t)−N(s) is the number of events in (s, t].

(1) Homogeneous Poisson Process

Pr[N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
, (k = 0, 1, . . . )

where λ is the intensity constant.

• If intervals I1, . . . , Im are disjoint then N(Ij) are independent

• N(I) is a Poisson r.v. only dependent on length of I.

(2) Non-homogeneous Poisson Point Process

Let λ : [0,∞)→ [0,∞). For every a ≤ b set

µa,b =

∫ b

a

λ(t)dt
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N(b)−N(a) is Poisson(µa,b).

• Still have disjoint intervals are independent

• These are continuous Markov processes (”memoryless”).

More generally, consider a Poisson point process on Rd. Let f : Rd → R≥0

be a measurable, bounded density function (
∫
Rd fdx = 1). Let λ ∈ (o,∞) be the

intensity. Then there is a point process so that

(1) for every open set U ⊂ Rd, the number of points in U is Poisson with mean

µU = λ

∫
U

fdx

(2) Disjoint regimes =⇒ independent r.v.’s.

E[number of points in Rd] = λ.

Note: Uniform Poisson point processes are totally fine but they give you infin-

itely many points (”continuum percolation”).

Letting λ→∞ is a possibility. G̃(λ; r) is a geometric random graph on Poisson

process of intensity λ.

Idea: G̃(λ; r), (λ = n) looks a lot like G(Xn; r). In G(Xn; r) choice of points

is independent. In G̃(λ; r) number of points in disjoint regimes are independent.

G̃(λ; r) and G(XZ ; r) look similar where Z ∈ Po(n).

Exercise 20.5. Consider G(Xn; r) on [0, 1]d where the distribution is uniform.

Write down approximate formula for E[number of triangles] as a function of n and

r = r(n) up to a constant factor. Assume r → 0.
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21. October 29

Random geometric graphs

For n ≥ 2, let G(Xn; r) be a random geometric graph where Xn = {x1, x2, · · · , xn}
is a set of n i.i.d. points in Rd underlying density f which is bounded and measur-

able.

Induced subgraph Γ is a connected and feasible graph on k vertices. (i.e. possible

to appear as an induced subgraph)

Exercise 21.1. K1,m is not feasible in R2 for m ≥ 7.

Remark 21.2. By Penrose, E[# of induced copies of Γ] ∼ c nkrd(k−1) where the

constant c only depends on d, f,Γ.

Exercise 21.3. Same in Rd for K1,md . How does md grow with d?

Remark 21.4. 1. If nkra(k−1) → µ ∈ (0,∞) as n → ∞, then the number of

induced copies of Γ is Poisson distributed as n→∞.

2. If nkrd(k−1) →∞ then CLT for the number of induced Γ.

3. Threshold for Γ : r ∼ n−k/d(k−1).

Exercise 21.5. From induced subgraph counts, one may deduce subgraph counts as

a linear combination. For example,

1. # of @
@@�

��
t

t
t
= # induced @

@@�
��

t
t

t
+ 3 # induced

�
��@

@@t
t

t
2. # of

�
��@

@@t
t

t= # induced
�
��t

t
t

Question 1. Critical exponent r = n−1/d ?? True, but what does this mean?

Getting things up to constant average degree makes for c qualitative / global

changes on graphs, a.k.a giant component average, etc.

2. Threshold for connectivity for G(Xn, ; r)? This is tricky; in particular, answer

depends a lot on underlying distribution function f .

Case 1. Uniform distribution on convex body (i.e. convex, compact set with non-

empty interior). Look at cube [0, 1]d. Try to guess threshold for connectivity.

Certainly we need minimum degree δ(G) ≥ 1 in order to ensure connectivity. Fix

i ∈ [n].

Pr[xi is near the boundary within r]→ 0

E[# points in a ball B(xi; r)] = ncrd
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In G(Xn; r),

E[deg(v)] ∼ np

∼ c log n, if p =
c log n

n
.

deg(v) is distributed like Po(µ) with mean µ.

Pr[deg(v) = 0] ∼ e−µ ∼ e−c logn ∼ n−c

E[#isolated vertices] ∼ n1−c

More precisely, set p = logn+c
n for c ∈ (−∞,∞).

E[#isolated vertices]→ e−c

For G(Xn, r), makes E[deg v] ∼ log n. Is deg(v) Poisson distributed??

By proposition, Xn ‘is close to’ Poisson point process of intensity nf . cnrd = log n

Guess=θ
(

logn
n

)1/d

(threshold of conectivity)

Penrose: For nice bounded region with f bounded below in this region

lim
n→∞

nrd

log n
=

1

δo
,

where δ0 is the infimum of f on support if uniformly distributed.

Let R = threshold for connectivity = min r such that G(Xn; r) is connected, and

let B = volume of a ball of radius r in Rd.
Standard multivariable Gaussian: µ = 0 mean, Σ = identity matrix.

If

R
√

2 log n− (d− 1) log log n+
d− 1

2
log log log n+ log kd →∞,

then w.h.p connected.

If it goes to −∞, w.h.p disconnected.

W.h.p., largest point ‖x‖ ∼ x ∼
√

2 log n

Threshold: R ∼ (d−1) log logn√
2 logn

Lesson: Must r much bigger to assume connectivity when f is Gaussian.



58 MATTHEW KAHLE

22. Wednesday, October 24

22.1. More on Random Geometric Graphs and Poisson point processes.

First recall the following definition concerning Poisson point processes:

Definition 22.1. For a Poisson point process with intensity λ, density function f ,

and a Borel set A ⊂ Rd, Pλ(A) := E[# pts in A] is a Poisson distributed random

variable with mean µ = λ

∫
A

f(x)dx.

Lemma 22.2. Given a fixed λ > 0, let Nλ ∈ Po(λ), and Pλ = {x1, . . . , xNλ} be

i.i.d. random points. Then Pλ is a Poisson point process with intensity λ.

Proof of Lemma. Let A1, . . . , Ak be a Borel-set partition of Rd. Let n1, . . . , nk

be positive integers such that n1 + . . .+ nk = n. Then

Pr[Pλ(Ai) = ni ∀ i] = Pr[Nλ = n] · Pr[Pλ(Ai) = ni ∀ i | Nλ = n]

=
e−λλn

n!
· n!

n1!n2! . . . nk!
·
k∏
i=1

(∫
Ai

f(x)dx

)ni

=

k∏
i=1

exp
(
−λ
∫
Ai
f(x)dx

)(
λ
∫
Ai
f(x)dx

)ni
ni!

The first part of the second line is because Nλ ∈ Po(λ), and then the n points

must be partitioned into the Ai. The extra integral in the last line comes from

1 =

∫
Rd
f(x)dx =

k∑
i=1

∫
Ai

f(x)dx.

So the Pλ(Ai) are independent random variables in Po(µi) with µi = λ

∫
Ai

f(x)dx.

Hence Pλ is a Poisson point process with intensity = λ.

Upshot: One can prove something about Xn = {x1, . . . , xn} as n→∞ by proving

something about Pλ = {x1, . . . , xNλ}, Nλ ∈ Po(λ) and letting λ → ∞. [”Pois-

sonization.”]

Exercise 22.3. Let Xn be n points i.i.d. uniformly in [0, 1]d, d ≥ 2. Assume

r → 0. What is E[# of triangle subgraphs] in G(Xn, r)?

Let p = Pr[xi, xj , xk form a triangle], then E[# of triangles] =
(
n
3

)
p by linearity of

expectation.

p = Pr[xi ∼ xj , xj ∼ xk, xk ∼ xi]
= Pr[xi ∼ xj ] · Pr[xj ∼ xk] · Pr[xk ∼ xi | xi ∼ xj ∼ xk]
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This last term is the probability that two points in a unit ball around a point

are also at most unit distance apart, and it depends only on the dimension d. Call

this probability c′d. The first two terms are independent, and hence equal, and will

be some fixed constant depending on d multiplied by the volume of the ball around

a point. So this is cdr
d for some constant cd, which depends only on d and the

distribution function f .

p ∼ (cdr
d)2 · c′d =⇒ E[# of triangles] ∼ cn3r2d, with c = c(d, f)

Suppose n3r2d = 1, r = n
−3
2d :

If r = o(n
−3
2d ), whp there are no triangles.

If r = ω(n
−3
2d ), whp there are lots of triangles.

In fact, if n3r2d → c, Penrose shows that the number of triangles is Poisson dis-

tributed in the limit. Similarly, E[# of C4’s] ∼ cn4r3d. More generally, in Ch. 3 of

Penrose, he shows the following:

Lemma 22.4. Let Γ be a connected graph on k ≥ 2 vertices.

Then n−kr−d(k−1)E[# Γ subgraphs]→ µ, which only depends on Γ, d, and f .
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23. Wednesday, October 31

23.1. Cleanup discussion. This lecture, we continue our discussion on the ran-

dom geometric graphs G(Xn; r).13 We discussed that the threshold for connectivity

of G(Xn, r) depends on the underlying density. For uniform densities on a con-

vex body, the threshold is R ∼ C

(
log(n)

n

)1/d

(somewhat akin to our results for

G(n, p)), whereas for the standard multivariate normal distribution, the threshold

is R ∼ (d− 1) log(log(n))√
2 log(n)

(a much larger threshold radius than the G(n, p) case).

These cases, however distinct their bounds, have in common with the standard

G(n, p) case that the threshold for connectivity is the same as that for the necessary

condition of δ(G) ≥ 1 whp as n → ∞, where δ(G) stands for minimum degree of

G. We cannot surmise, however, that all the properties of G(n, p) carry over to

G(Xn; r); the next exercise is a case in point.

Exercise 23.1. Let f be a uniform distribution on a cube, [0, 1]d, and assume we

have G(Xn; r) with underlying distribution f for Xn and r → 0 as n → ∞. Show

that G(Xn, r) is not an expander graph: as n → ∞, whp h(G(X − n; r)) → 0.14

This is in contrast to the case of G(n, p), since if p is large enough so that whp

G(n, p) is connected, then h(G(n, p)) is bounded away from 0 whp.

Exercise 23.2. For comparison, try finding h(G(Xn; r)) on the torus Td, again

with uniform distribution, and r the constant so that the probability of any two

vertices connecting is
1

2
.

Question 23.3. Compare the fixed-r case of G(Xn; r) hinted at above with G

(
n,

1

2

)
.

Look at clique numbers and independence numbers. Weak bounds are possible even

with simple estimates; how well can you do?

23.2. Giant components on Infinite Random Geometric Graphs. Again

rehashing the same sorts of questions that we did considering characterizations of

G(n, p), the next problem is to characterize when a giant component appears in

random geometric graphs. Rather than looking at sequences of finite graphs with

n vertices as n→∞, we choose to look at an infinite graph, instead. To do so, we

recall the process cousin to G(Xn; r), the G(Pλ; r) process. We still connect vertices

with mutual distance less than r, but now the points are chosen by a Poisson point

process with intensity λ, λ ∈ (0,∞). Recall the salient properties of such a process.

13As a reminder, these graphs are defined by choosing n points according to i.i.d. random

variables with a common density function f , then connecting vertices within r = r(n) of each

other; r is usually a function of n.

14Recall that here, we define h(G) = min
|S|≤bn

2
c

{
#E[S, S{]

|S|

}
.
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(1) For any Borel set A ⊂ Rd, Pλ(A) := E {# points in A} is a Poisson-

distributed random variable with mean λ
∫
A
f(x)dx for some measurable,

bounded, density function f : Rd → R.

(2) For disjoint Borel Sets A,B, Pλ(A) and Pλ(B) are disjoint.

For today’s purposes, we drop the requirement that f is density, so that we can

take f ≡ 1; in other words, replace requirement 1 with

(1’) For any Borel set A ⊂ Rd, Pλ(A) := E {# points in A} is a Poisson-

distributed random variable with mean λ·vol(A), where vol(A) is the vol-

ume (Lebesgue measure) of A.

Therefore, our process will be called uniform on all of Rd. We will give this process

the special name Hλ. Note that this process Hλ will have infinitely many vertices

whp.

To discuss giant components, it is easier to discuss a particular giant component’s

emergence than to discuss its existence in general; therefore, we add ~0 ∈ Rd into

our vertex set so that we can talk about the size of the component containing ~0.

Therefore, we consider the process G ∼ G(Hλ ∪
{
~0
}

; 1). That is, we connect

vertices separated by a distance strictly less than 1.15

Definition 23.4. For k ≥ 1, let pk(λ) := Pr(the component of G containing ~0 is of order k).

Also define

p∞ := 1−
∞∑
k=1

pk(λ)

= Pr(the component of G containing ~0 is of infinite order.)

Note that 0’s component contains 0, so there is no need for a p0.

Let λC := inf {λ > 0 : p∞(λ) > 0}.

This setup is akin to a model we will discuss later in the course: an infinite lattice,

including vertices with uniform probability, and then connecting adjacent lattice

points according to the lattice structure. Such a model is called site percolation,

whose only real difference from our model is that the vertices can only appear

at “fixed” positions. Our model, allowing vertices everywhere, is therefore called

continuum percolation. Our goal today will be to use the following fact.

Theorem 23.5 (Fundamental Result of (Continuum) Percolation). 0 � λC �∞.

This proof can be found in the aptly named reference, Continuum Percolation

by Meester and Roy ([9]).

15Note that the Poisson point processes have no n→∞ mechanism, so we cannot let r → 0.
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23.3. Giant components of Random Geometric Subgraphs on Sub-Cubes.

M. Penrose, in turn, addressed the question of how this infinite-graph model relates

to the limit of finite random geometric graphs with |V | → ∞. He writes up this

work in Chapters 9 and 10 of [12]. We now overview this discussion, and attempt

to emphasize in what ways we fulfill our strategy of an analogue of the Erdös-Rényi

phase transition at the critical value for the existence of a giant component.

Definition 23.6. Let Hλ,s be the restriction of Hλ to the cube
[
−s

2
,
s

2

]d
. (The

parameterization is chosen such that the side-length is s when the parameter is s.)

Recall that L1(G) is the size of the largest component of G a graph.

Theorem 23.7. If λ 6= λC , then as s→∞,

s−dL1 (G(Hλ,s; 1))→ λp∞(λ).

We interpret this by noting that by our parameterization, sd is the volume of

the cube of the support of the distribution for Hλ,s. Therefore, we may rewrite the

above as saying that

L1 (G(Hλ,s; 1))

Vol
([
− s2 ,

s
2

]d) → λp∞(λ).

Again, we have a sub-critical and super-critical regime, depending on the value

of λ.

(1) In the supercritical case, λ > λC = inf {λ > 0 : p∞(λ) > 0}, then p∞(λ) >

0 (since the set whose infimum is taken is clearly upward closed; we will

elaborate on this point later) and hence

L1 (G(Hλ,s; 1))

Vol
([
− s2 ,

s
2

]d) → λp∞(λ) > 0.

Therefore, the largest component has a positive fraction of all points in

the given cube. This parallels the very supercritical regime on Erdös-Rényi

graphs: if p =
c

n
for c > 1, then L1 ∼ yn whp, where y is some constant

depending on c, so whp
L1

n
is a positive constant; i.e., the number of vertices

in the given component over the total number of vertices is (whp) at least

some positive constant.

(2) In the subcritical case, λ < λC , then p∞(λ) = 0, so whp

L1 (G(Hλ,s; 1))

Vol
([
− s2 ,

s
2

]d) → 0.

This again agrees with the Erdös-Rényi case: in the very subcritical case,

where p =
c

n
for c < 1, then L1 is Θ(log(n)), and hence the proportion
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of vertices in the largest component to all vertices is whp bounded by a

constant times
log(n)

n
, which tends to 0 as n tends to ∞.

Things are subtler, however, for λ = λC . In particular, p∞(λ) is not known, and

our current state of knowledge suggests the following conjecture.

Conjecture 23.8. p∞(λC) = 0.

This is known for continuum percolation on Rd when either d = 2 or d ≥ 19;

the inbetween dimensions are unknown.16 This work (of S. K. Smirnov and others)

relies heavily on the rich geometry of certain lattices.

In addition, we have even better bounds on the exact size of the largest compo-

nent in the sub-critical case, and the second-largest component in the supercritical

case (but not so large as to be connected). As an aside, since results on L1 in the

Erdös-Rényi case sometimes involved expression in n and log(n), the “size” of the

graph, here we would expect expressions in the volume of the cube, namely sd and

log(sd). Yet log(sd) = d log(s), so up to a constant, we can just write log(s).

(1) In the supercritical case, λ > λC , (but below the threshold for connectivity),

c1 ≤
L2(G)

log(s)d(d−1)
≤ c2.

(2) In the subcritical case, λ < λC ,

L1 ∼ c log(s).

Question 23.9. Can we determine the size of L1 (G (HλC ,s; 1))? A possible ap-

proach might be getting some better estimates by considering L1

(
G
(
Hλ(s),s; 1

))
,

where λ(s)→ λC as s→∞. Presumably, we would take the cases λ(s)↗ λC and

λ(s)↘ λC to get computable and tractable bounds.

Question 23.10. In the supercritical case, λ < λC , does lim
s→∞

L2(G)

log(s)d(d−1)
exist

whp?

23.4. Overview of Methods. We do not choose to try to copy the proofs of the

above statements here (they are in [12]), but we will discuss some tools used in the

proofs. The results are mostly about Poisson point processes.17

The first exercise and theorem allow you to regard a lower-probability situation

as a subset of a higher-probability situation, akin to the situation for the Erdös-

Rényi random graphs, where if p < p′, we could regard G(n, p) as a subgraph of

G(n, p′).

Exercise. If λ ∈ Po(µ) and λ′ ∈ Po(µ′) are independent, then λ+λ′ ∈ po(µ+µ′).

16Prof. Kahle suggested that the d = 3 case would be considerable work, possibly even to the

level of a Fields Medal.
17A common abbreviation for “Poisson point Process” is p.p.p.
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Theorem 23.11 (Superposition). Let P and P ′ be independent Poisson point pro-

cesses on Rd, with intensities g(·), g′(·). Then P ∪ P ′ is a Poisson point process

with intensity (g + g′)(·).

The next theorem allows you to reduce to any “sub-intensity” of a given intensity

while maintaining the Poisson-ness of the point process.

Theorem 23.12 (Thinning). Let P be a Poisson point process with intensity g(·).
Let p : Rd → [0, 1] be measurable. For each point x in P , declare x to be accepted

with probability p(x). The new point process, restricting the old process to the set

of accepted points, is again a Poisson point process with intensity p ∗ g(·).

The next theorem allows you to move homogenous point processes radially, if

you scale by the appropriate constant. If you have a homogenous Poisson point

process H on a region A ⊂ Rd of intensity λ, and a > 0 is some positive constant,

consider the point process aH on aA = {a ·x : x ∈ A} defined by scaling the points

in H out by the constant a.

Theorem 23.13 (Scaling). If H is a homogeneous, Poisson point process H on a

region A ⊂ Rd of intensity λ, and a > 0 is some positive constant, then aH is also

homogenous and Poisson.

Finally, for lack of a better position, we mention this result, emphasizing that

the giant component should be much larger than all other components.

Theorem 23.14. If λ > λC , then almost surely, G(Hλ, 1) has a unique infinite

component.
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24. (November 2):

This lecture covers some basic results of percolation theory, following Bollobás

& Riordan. The idea is to consider an infinite connected graph Λ, and look at

properties of random subgraphs. Often, Λ will have some symmetry, sometimes

including a vertex-transitive automorphism group, as is the case for the lattices Zd

for d ≥ 2 and the d-regular Cayley tree.

There are two main perspectives from which to view percolation on a graph:

• Bond percolation: Each edge (bond) is included (open) with probability p,

where individual bonds are independent random variables; all vertices are

included. The probability measure on the space of subgraphs is denoted

PbΛ,p, or simply Pp if Λ and b are clear from context.

• Site percolation: Each site is included with probability p; the open bonds

are those from the induced subgraph on the included sites. The probability

measure is denoted PsΛ,p, or simply Pp.

The resulting subgraph is denoted Λbp (or Λsp), or usually Λp if the type of per-

colation is clear from context.

Note that site percolation is in some sense “more general” than bond percolation

since bond percolation on Λ is equivalent to site percolation on L(Λ), the line graph

of Λ (ignoring sites in Λbp which have no open bonds). Here L(Λ) is the graph with

a vertex ve associated to each edge e of Λ, and veṽe′ if and only if e, e′ meet at a

vertex in Λ.

It is often convenient to use the natural “coupling” of measures PbΛ,p with 0 ≤
p ≤ 1, in which Λbp1 is viewed as a subgraph of Λbp2 if p1 ≤ p2. In other words,

we can think of choosing a subgraph of Λ by labeling each edge e with a random

value α(e) ∈ [0, 1], and include e in Λp if p ≥ α(e). A similar idea holds for site

percolation.

We will use the following notation:

• For sites x and y, x→ y means there exists an open path from x to y;

• For a site x, x→∞ means there exists an infinite open path starting at x;

• Denote the connected component including x by Cx;

• Write Θx(p) for Pp(x→∞), the probability that x→∞ in Λp.

Note that for locally finite graphs Λ, König’s infinity lemma implies that |Cx| =
∞ if and only if x → ∞; for this reason, we will assume from now on that Λ is

locally finite and has countably many vertices.

Let x and y be sites in Λ at distance d from one another. Then Θx(p) ≥ pdΘy(p),

since the right-hand side is the probability that y →∞ and the entire length-d path

y → x is open. This has the following very strong implication: either Θx(p) = 0

for all x ∈ Λ, or Θx(p) > 0 for all x ∈ Λ. This is true even if Λ does not have a
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vertex-transitive automorphism group, or indeed any symmetry at all; it relies only

on the connectedness of Λ.

Now, for a given x ∈ Λ, clearly Θx(p) is an increasing function of p. Hence

for any Λ there exists a critical probability pH ∈ [0, 1] such that Θx(p) = 0 when

p < pH , and Θx(p) > 0 when p > pH (independent of x). As with p∞(λ) previously,

this says nothing about the behavior of Θx(p) at the critical probabilitiy p = pH ;

in general, it is an open problem whether or not Θx(p) = 0 when p = pH , as one

might expect. Note that it is possible that pH = 0 or pH = 1 (as an example of the

latter case, take Λ = Z). However, for many interesting choices of Λ, including for

example Zd for d ≥ 2, 0 < pH < 1.

Before proving the next proposition, we state the following theorem without

proof:

Theorem 24.1. (Kolmogorov zero-one law) Let X = (X1, X2, . . .) be an infinite

sequence of independent random variables, and A an event in the σ-field generated

by X such that A is independent of (X1, . . . , Xn) for each n (i.e. A is a tail event).

Then either P (A) = 0 or P (A) = 1.

Proposition 24.2. For fixed Λ, let E be the event “there is an infinite open clus-

ter.” If p < pH , then Pp(E) = 0, and if p > pH , then Pp(E) = 1.

Proof. First, assume p < pH . Then Pp(E) ≤
∑
x∈Λ Θx(p); this is a sum of infinitely

many numbers, all of which are exactly 0 (not merely tending to 0) so Pp(E) = 0.

On the other hand, assume p > pH . Order the edges of Λ so that the jth edge

corresponds to the random variable Xj . Then E is independent of (X1, . . . , Xn)

for any n, since existence of an infinite component is unaffected by the inclusion

or exclusion of any finite set of edges. Hence E is a tail event, so by Kolmogorov’s

zero-one law, Pp(E) = 0 or Pp(E) = 1. But for any x, Pp(E) ≥ Θx(p) > 0, so in

fact Pp(E) = 1. �

One says that percolation occurs if Θx(p) > 0; that is, if Pp(E) = 1.

Here is one example where pH is easy to calculate exactly: let Λ be the k-

branching tree Tk, consisting of a root vertex x with k descendants x1, x2, . . . xk,

each of which has k descendants, and so on (so Tk is an infinite tree where one vertex

has degree k and all other vertices have degree k + 1). Then in site percolation,

Θx(p) = 1 − pX , the complement of the extinction probability pX for a Galton-

Watson process with X = Bin(k, p), where the nth step of the Galton-Watson

process corresponds to the nth-level descendants of x (those at distance n from x).

We know that the critical value of p for that Galton-Watson process is at p = 1/k,

so pH = 1/k for Λ. We can say more, namely that when p = pH , Θx(p) = 0, since

extinction occurs with probability 1 at p = 1/k.
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25. (Nov 5, 2012)

Question 25.1. What is the critical probability for bond percolation on Z2?

Another interesting critical probability is

pT = inf{p : Ep[|Cx|] =∞} ( or sup{p : Ep[|Cx|] <∞})

Compare this definition with the previous critical probability we defined

pH = inf{p : Θx(p) > 0} ( or sup{p : Θx(p) = 0})

By their definitions, we have pT ≤ pH .

Proposition 25.2.
1

3
≤ pT ≤ pH ≤

2

3

Let Λ be the Z2 lattice. A useful notion is the dual of Λ, denoted Λ∗, is also a

Z2 lattice and that each edge in Λ corresponds to a unique edge in Λ∗.

Remark 25.3. Let H be a finite connected subgraph of Λ with vertex set C. Then

there is a unique infinite component, C∞, of Λ− C.

Definition 25.4.

δ∞C = set of bonds of Λ∗ dual to bonds joining C to C∞

Proposition 25.5. δ∞C is a cycle with C in its interior

Proof. Let ~F be set of C −C∞ bonds oriented from C to C∞. For ~f ∈ ~F , let f∗

be dual edge (oriented π
2 rotated counterclockwise).

Claim: If f∗ = ~uv, then there is a unique bond of ~δ∞C leaving v.

Set R = Z2 − C − C∞. Note: There are no C∞ −R bonds.

Suppose abcd is a 1× 1 square with v in the middle and u below. So a ∈ C and

b ∈ C∞.

Case 1. d ∈ C. Then necessarily c /∈ R. So c ∈ C or c ∈ C∞. If c ∈ C∞, then
~dc ∈ ~F and you leave through the top. If c ∈ C, then you leave through the right.

Case 2. c ∈ C∞. Then d ∈ R. If d ∈ C, then you leave through the top. If

d ∈ C∞, then you leave through the left.

Case 3. c /∈ C∞. Since c /∈ R, we have c ∈ C. If d ∈ R, then you leave through

the right. We get a contradiction with d ∈ C∞, since we can not get disjoint ac−bd
paths on exterior of cycle abcd, by Kuratowski’s theorem. This would result in a

topological embedding of K5 into plane.

As a consequence of the proposition, either the origin is in an infinite component

or some cycle separates 0 from ∞ in Λ∗.
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Let µn be the number of self-avoiding walks in Λ starting at 0 of length n. We

get the following inequality

2 · 2n ≤ µn ≤ 4 · 3n−1

Now we can prove the proposition.

Suppose p < 1
3 . Let C0 be the open cluster containing 0. For x ∈ C0, there

exists an open path from 0 to x. So |C0| ≤ the number of open paths starting from

0 =: X.

Ep[|C0|] ≤ Ep[X] =
∑
n=0

µnp
n ≤ 1 +

4

3

∞∑
n=1

(3p)
n−1

<∞

Hence pT ≥ p. Since p was arbitrarily less than 1
3 , we have pT ≥ 1

3 .

Suppose p > 2
3 . Let Lk be the path of length k from (0, 0) to (k, 0) and S be a

dual cycle surrounding Lk of length 2l.This forces S to cross the x-axis somewhere

between (k + 1
2 , 0) and (l − 3

2 , 0). Hence there are fewer than l choices for crossing

edge e∗. So there are at most lµ2l−1 choices for S.

Let Yk be the number of open dual cycles surrounding Lk.

Then Ep[Yk] ≤
∑
l ≥ k + 2lµ2l−1(1− p)2l.

Since 3(1− p) < 1, this sum converges.

So Ep[Yk]→ 0 as k →∞. There exists some k such that Ep[Yk] < 1.

Let Ak be event that Yk = 0. Then Prp[Ak] > 0. Let Bk be event that all k

bonds on Lk are open. Prp[Bk] = pk.

Since Ak and Bk look at different bonds, the events are independent.

Hence Prp[Ak ∩ Bk] = pkPrp[Ak] > 0. There is an infinite open path on the

event Ak ∩ Bk. So we have positive probability of an infinite open path from 0.

Hence pH ≤ p.

Remark 25.6. Actually it can be shown that limn→∞ µ
1
n
n = λ. This λ is called the

connective constant of Z2. We showed that 2 ≤ λ ≤ 3. This method that we did

can show that
1

λ
≤ pT ≤ pH ≤ 1− 1

λ
It has been shown that 2.62 ≤ λ ≤ 2.68.

Exercise 25.7. Show that λ exists. Hint: Show that µm+n ≤ µm · µn.
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26. (November 7)

Our bounds for the previous critical probabilities can be improved upon.

Theorem 26.1. pH = 1
2 .

In 1960’s, Harris showed that if p < 1
2 , then Prp(∃ infinite component) = 0. In

1982, Kesten showed that if p > 1
2 , Prp(∃ infinite component) = 1. In fact, it can

be showed that at critically, there are no infinite components.

Given a k×(l−1) rectangle, R, in Λ = Z2, there exists a (k−1)×l dual rectangle

Rh in Λ∗. The h corresponds to the horizontal dual rectangle.

Let H(R) be event of horizontal crossing in R (i.e. open path from left to right)

and let V (Rh) be the event of vertical crossing in Rh.

Lemma 26.2. Whatever the states of bonds in R, exactly one of H(R) and V (Rh)

occurs

Proof. Consider R∪Rh as a part of Archimedian tiling of R2 by regular octagons

and squares. The octagons are around the vertices of the lattice and dual lattice

and the squares correspond to the bonds. Color the lattice octagons blue and the

dual lattice vertices orange. We color the squares depending on which bond is open.

Draw boundary graph between orange and blue regions. This graph has vertices of

degree 1 or 2 and the degree 1 vertices occur on corners.

Let x, y be vertices along the top and w, z be the vertices along the bottom. So

connected component containing x is a path that ends at one of w, y, z. The path

from x can not end at z, since path from x always has orange on its left.

If x is connected to w, then vertical crossing occurs to the left of x−w path. This

is called the left-most crossing. If x is connected to y, then a horizontal crossing

occurs to the right of the path. This is called the top-most crossing.

Corollary 26.3. 1)

Prp[H(R)] + Pr1−p[V (Rh)] = 1

for any p ∈ [0, 1] and any rectange R.

2) If R is (n+ 1)× n, then

Pr 1
2
(H(R)) =

1

2

for any n ∈ N.

3) If S is n× n square, then

Pr 1
2
(V (S)) = Pr 1

2
(H(S)) ≥ 1

2

We will be using the Russo-Seymour-Welsh method to prove Harris’ result. The

following proof is by Bollobas and Riordan 2006.
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Let R = [m]× [2n],m ≥ n and S = [n]× [n]. Let X(R) be the event that there

are open paths P1 and P2 such that P1 is a vertical crossing of S and P2 lies within

R and connectes P1 to right side of R.

Lemma 26.4.

Prp[X(R)] ≥ Prp[H(R)] · Prp[V (S)] · 1

2

Proof. Suppose V (S) holds. Let LV (S) be the left-most open vertical crossing.

For every possible path P1, the event LV (S) = P1 does not depend on state of

bonds of S to right of P1.

Claim: For every possible P1, we have Prp[X(R)|LV (S) = P1] ≥ 1
2Prp[H(R)].

We get the proof of the claim by symmetry and reflecting P1 to above square.

Let Y (P1) be the event that P1 is joined to right side of R.

Prp[Y (P1)|LV (S) = P1] = Prp[Y (P1)] ≥ 1
2 · Prp[H(R)]

If Y (P1) holds and LV (S) = P1, thenX(R) holds. This implies that Prp[X(R)|LV (S) =

P1] ≥ 1
2 · Prp[H(R)]

So

Prp[X(R)] ≥
∑
P1

Prp[X(R)∩LV (S) = P1] =
∑
P1

Prp[X(R)|LV (S) = P1]Pr[LV (S) = P1]

Hence we have

Prp[X(R)] ≥
∑
P1

1

2
· Prp[H(R)]Pr[LV (S) = P1] =

1

2
· Prp[H(R)]Prp[V (S)]

Let hp(m,n) = Prp[H(R)], where R is an m × n rectangle. Let h(m,n) =

h 1
2
(m,n).

Corollary 26.5. For n ∈ N, we have

h(3n, 2n) ≥ 2−7

We would guess that limn→∞ h(3n, 2n) exists since for all n, we have

1

27
≤ h(3n, 2n) ≤ 1

2

Conjecture 26.6. Does h(an, bn)→ f(ab ) as n→∞?
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27. November 9

Continuing Harris-Kesten: pH ≥ 1
2

Last time: Let R = m × n rectangle, hp(m,n) := P(H(R)), and h(m,n) :=

h 1
2
(m,n). It was shown via duality that h(n + 1, n) = 1

2 ∀ n ≥ 1. Then by

monotonicity, h(n, n) ≥ 1
2 for n ≥ 1. The next step is to use the Russo-Seymour-

Welsh method to go from squares to rectangles. Recall the following lemma and

its corollary:

Lemma 27.1. For R an m × 2n rectangle, m ≥ n, and S an n × n square, let

X(R) be the event that a vertical crossing of S intersects a horizontal crossing of

R. Then, by symmetry, P(X(R)) ≥ P(H(R)) · P(V (S)) · 1
2 ≥ P(H(R)) · 1

4 .

Corollary 27.2. h(3n, 2n) ≥ 2−7.

Proof of Corollary. Let the bottom middle n×n square be S, the leftmost 2n×2n

square be R1, and the rightmost 2n× 2n square be R2. Then let X1 be the event

X(R1), X2 be the event X(R2), and X3 be the event H(S). Then by the lemma,

since R1, R2 are in fact squares and thus P(H(Ri) ≥ 1
2 , we have P(X1),P(X2) ≥ 1

8 .

And P(X3) ≥ 1
2 . Then P(X1, X2, X3) ≥ P(X1) · P(X2) · P(X3) ≥ 1

8 ·
1
8 ·

1
2 = 2−7.

Proposition 27.3. For k ≥ 3 and all n ≥ 1, h(kn, 2n) ≥ 217−8k

Proof of Prop. Start with a 2n×M rectangle, R, with M ≥ 2n. Write M as M =

m1 +m2−2n, where m1 is measured from the left of the rectangle, and m2 from the

right, so that R1 := 2n×m1 and R2 := 2n×m2 intersect on a 2n×2n square, S. Let

X1 = H(R1), X2 = H(R2), and X3 = V (S), so that P(H(R)) ≥ P(X1, X2, X3) ≥
P(X1) ·P(X2) ·P(X3). So h(m1 +m2−2n) ≥ h(m1, 2n) ·h(m2, 2n) · 12 . In particular,

for m = m1 ≥ 2n, 3n = m2, h(m+n, 2n) ≥ h(m, 2n) ·h(3n, 2n) · 12 ≥ 2−8 ·h(m, 2n).

Hence for m+ n = kn, k ≥ 3,

h(kn, 2n) ≥ 2−8 · h((k − 1)n, 2n) ≥ . . . ≥ 2−7−8(k−3) = 217−8k

In particular, h(6n, 2n) ≥ 2−31.

Exercise 27.4. Show that for constants a and b, there exists ha,b, a constant

depending only on a, b, such that h(an, bn) ≥ ha,b > 0.

Remark 27.5. The conjecture here is that lim
n→∞

h(an, bn) exists and is > 0 ∀ a, b.

Another approach to proving the proposition is to use the construction X from the

lemma. Here, let M = m1 + m2 − n with m1,m2 intersecting on the middle n

coordinates, and so S is the bottom n × n square in this intersection. Let Xi =
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X(Ri) for i = 1, 2, and let X3 = H(S). Then P(Xi) ≥ h(mi, 2n) · 1
4 ,P(X3) ≥ 1

2 . So

h(m1 +m2 − n, 2n) ≥ h(m1, 2n) · h(m2, 2n) · 2−5. Hence

h(5n, 2n) ≥ h(3n, 2n)2 · 2−5 ≥ 2−19

h(6n, 2n) ≥ h(5n, 2n) · h(2n, 2n) · 2−5 ≥ 2−19 · 1

2
· 2−5 = 2−25 > 2−31

Definition 27.6. Recall that C0 is the open cluster containing the origin. Let

r(C0) = max{d(x, 0) : x ∈ C0}, where d(x, 0) is the graph distance, and not the

shortest distance through the open cluster.

Theorem 27.7. (Harris) Θ( 1
2 ) = 0. In fact, P 1

2
(r(C0) ≥ n) ≤ n−c for some

absolute constant c > 0.

Proof of Theorem. When looking at the dual lattice Λ∗, the edge e∗ is open

iff e is closed. Let Ak be the square 6N × 6N annulus, with N = 4k, centered

on the origin. Let Ek be the event that Ak contains an open cycle in Λ∗, so that

Ek ⇒ r(C0) ≤ 4k+1. Then Ak is covered by the four 6N × 2N rectangles. Hence

P(Ek) ≥ P(all four 6N × 2N rect’s have longways crossing) ≥ h(6N, 2N)4 ≥ 2−100.

Let ε = 2−100 > 0. So P(r(C0) ≥ 4l+1) ≤ (1 − ε)l. To relate this back to n, let

n = 4l+1 ⇒ l = log(n)−log(4)
log(4) ≥ log(n)

2 , for large n. Then

1− ε < 1⇒ (1− ε)l ≤ (1− ε)
log(n)

2 = n
log(1−ε)

2 , with
log(1− ε)

2
= −c

For small ε, log(1− ε) ∼ −ε⇒ c ∼ 2−101.

Remark 27.8. P 1
2
(H(S)) ≤ n ·P 1

2
(r(C0) ≥ n) by union bound, since H(S) implies

that some point on the left of S is connected to some point on the right, creating a

path of length at least n. Hence P 1
2
(r(C0) ≥ n) ≥ 1

2n .

Then 1
2n ≤ P 1

2
(r(C0) ≥ n) ≤ n−c =⇒ 2−101 <

log[P 1
2
(r(C0) ≥ n)]

log(n)
≤ 1.

Which leads to the following question:

Question 27.9. Does lim
n→∞

log[P 1
2
(r(C0) ≥ n)]

log(n)
exist?
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28. (Wednesday, November 14)

Goal Prove Harris-Kesten Theorem

pH(Z2) =
1

2

(Harris showed that pH(Z2) ≥ 1
2 , and Kesten proved that pH(Z2) ≤ 1

2 , see Chapter

2 of BR book.)

Probability Preliminaries

– Margulis(1974)-Russo(1981) Formula

– Friegat Kata Theorem 1998)

1. MR formula

Let Qn = n dimensional cube=boolean lattice (w1, · · · , wn) where each wi =0 or

1, and let Qnp = probability measure on Qn, where p = (p1, · · · , pn) and each coor-

dinate is 1 with probability pi and 0 with probability 1− pi (i.i.d).

Let A = increasing event (i.e. x ∈ A, y ≥ x, then y ∈ A) ⊆ Qn (up-set)

Let w ∈ Qn, then wi, ith coordinate variable of w is pivotal for A iff precisely one

of w = (w1, · · · , wn) and ri(w) := (w1, · · · , wi−1, 1− wi, wi+1, · · · , wn) is in A.

Influence of ith variable on A

Let βi(A) := βp,i(A) = Pp(wi is pivotal for A), where Pp(A) is a function of p. (In

fact, it is a polynomial, hence smooth.)

Lemma 28.1. (MR)
∂

∂pi
Pp(A) = βi(A)

Lemma 28.2. (FK 1996, Proc. AMS) “Every monotone graph property has a

sharp threshold”

But, containing K4 subgroup property is ‘not’ sharp.

Let A be an increasing subset of Qnp with Pp(A) = t.

If βi(A) ≤ δ for every i, then

n∑
i=1

βi(A) ≥ Ct(1− t) log
1

δ
,

where c > 0 is an absolute constant.

Let E be an event (eg. H(r) = ∃ horizontal open coring of m×n rectangle R.) e is a

pivotal for E in configuration w iff w+ is in E and w− is not in E, where w+ agrees

with everywhere except possible at ej included and w− agrees with everywhere

except possible at ej excluded.
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Let Ip(e, E) = Pp(e is pivotal for E).

If E is increasing, Ip(e, E) = Pp(w+ ∈ E and w− ∈ E).

Lemma 28.3. Let R = m× n rectangle in Z2 and e be a bond in R. Then,

Ip(e,H(R)) ≤ 2P 1
2
(r(C0) ≥ min(m/2− 1,

n− 1

2
)

for all 0 < p < 1.

(Proof) Suppose e is a pivotal for H(R), and w+ ∈ H(R), w+ /∈ H(R), and

every horizontal crossing in H(R) must use e. So one end point of e joined to left

of R, and another end point joined to right side of R. So at least one end point is

start at open path of at least m/2− 1.

Hence,

(3) Ip(e,H(R)) ≤ 2Pp(r(C0) ≥ m/2− 1

Similarly, we also have w− ∈ V (Rh). So in w−, there is open dual path crossingRh

vertically using e∗.

(4) Ip(e,H(R)) ≤ 2P1−p(r(C0) ≥ n− 1

2

For each a, r(C0) ≥ a is increasing event. so Pp(r(C0) ≥ a) is increasing function

of p. So, claim follows from (1) for p ≤ 1
2 and (2) for p ≥ 1

2 .

Lemma 28.4. Let p > 1
2 , and let k ≥ 1 be fixed. Then, ∃γ = r(p) > 0 and

n0 = n0(p, k) such that hp(kn, n) ≥ 1− n−r for all n ≥ n0.
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29. (Friday, November 16)

29.1. Kesten’s theorem. If p > 1
2 , then P~p(E∞) = 1.

Lemma 29.1. Let p > 1
2 and k ≥ 1 be fixed. Then ∃γ = γ(p) > 0, and n0 =

n0(p, k) such that hp(kn, n) ≥ 1− nγ .

(Recall that hp(kn, n) ≥ hk > 0 for every n ≥ 1.)

Proof. By previous results, we have P1/2(r(C0) ≥ n) ≤ n−c. By lemma,

Ip′(e,H(R)) ≤ n−a = γ

for some absolute constant a, for every bond e of R and p′ ∈ [1/2, p].

Write f(p′) := Pp′(H(R)). By Friedgut-Kalai, we have∑
e∈R

Ip′(e,H(R)) ≥ cf(p′)(1− f(p′)) log (1/δ),

for some absolute constant c > 0, for all p′ ∈ [1/2, p].

By MR, this sum is the derivative of f(p′) with respect to p′. Write g(p′) :=

log
(

f(p′)
1−f(p′)

)
. Then

d

dp′
g(p′) =

f(p′)(1− f(p′))

d

dp′
(f(p′)) ≥ c log (1/δ) = ac log n.

Taking n large enough, we have g(p) ≥ ac(p − 1
2 ) log n + g( 1

2 ), where the second

term is bounded below by some constant. Hence g(p) ≥ ac(p− 1
2 ) logn

2 .

Now

g(p) = log

(
f(p)

1− f(p)

)
≥
ac(p− 1

2 ) log n

2
,

so
f(p)

1− f(p)
≥ e

ac(p− 1
2
) logn

2 ⇒ f(p) ≥ nac(p−
1
2 )/2

1 + nac(p−
1
2 )/2

≥ 1− nac(p− 1
2 )/2.

�

Theorem 29.2 (Kesten). If p > 1/2, then Pp(E∞) = 1. (E∞: event that there

exists an infinite open cluster)

Proof. Fix p > 1/2. Let γ = γ(p) = ac(p − 1
2 ) 1

2 and n0 = n0(p, k) be as before.

Assume n ≥ n0.

Let k = 0, 1, 2, . . . and Rk be the rectangle where bottom-left corner at 0, and

2kn× 2k+1n is k is even, and 2k+1n× 2kn if k is odd. Let Ek be the event that Rk

is crossed the long way by an open path. Any two Ek, Ek+1 meet. So if all Ek’s

hold, so does E∞.

Apply union bound:∑
k≥0

Pp(Ek fails) ≤
∑
k≥0

(2kn)−γ =
n−γ

1− 2−γ
< 1,
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for large enough n. So Pp(E∞) > 0. By Kolmogorov 0-1 law, Pp(E∞) = 1.

�

Exercise 29.3. Show that 0 < PH(Zd) < 1 for every d ≥ 3.
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30. (November 19)

Question 30.1. What is the notion of higher dimensional percolation

This lecture is based on the paper “On a sharp threshold transition from area

law to perimeter law” by Aizenman, Chayes, Chayes, Fröhloh, Russo 1983.

Take the complete lattice Z3 sites and bonds alike. Square plaquettes appear

i.i.d. with probability p. Consider (M ×N) rectangular loops γ in lattice plane.

Let Wγ be the event that γ is a boundary of some subset of plaquettes. If X is

a collection of 2−dimensional plaquettes, then δX is collection of all bonds in an

odd number of squares in X.

So Wγ is an monotone increasing event as p increases. We get the following

bounds on the probability of Wγ .

pM ·N ≤ Prp[Wγ ] ≤
(

1− (1− p)4
)2(M−1)+2(N−1)

≤ (4p)
2(M−1)+2(N−1)

We get the lower bound since if all plaquettes are present within the loop, then

Wγ holds. We get the upper bound from needing at least one of the four possible

plaquettes needs to be turned on for each bond in γ. We disregard the corners

because we want independent events.

Another way to write the previous inequality is

pArea(γ) ≤ Prp[Wγ ] ≤ (4p)
Perimeter(γ)−4

This implies that there are some absolute constants c1, c2 > 0 such that for any

γ, we have

exp (−c1Area) ≤ Prp[Wγ ] ≤ exp (−c2Perimeter)

This plaquette model is dual to bond percolation on the Z3 lattice. If pc is the

critical probability for bond percolation in Z3, then we would expect some sort of

transition to occur at 1− pc in the plaquette model.

Theorem 30.2.

Prp[Wγ ] ∼

{
exp (−α(p)A(γ)) : p > 1− pc
exp (−c(p)P (γ)) : p < 1− pc

where α, c are positive constants depending only on p

The previous ∼ means that
log(Pr[Wγ ])

A(γ) → −α as A(γ)→∞.

Question 30.3.

lim
p→1−p+c

α(p) = 0?
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This is known as the surface tension at critically.

Question 30.4. What is the right notion of plaquette percolation? What corre-

sponds to an infinite object when p > 1− pc but not when p < 1− pc?

Question 30.5. Also what happends when p = 1
2 in Z4 for 2−dimensional paque-

ttes?

This system is self-dual, so we would expect transition occurs at p = 1
2

Let D(0, y) be the chemical distance in the random graph in lattice and let |y|
denote the graph distance from 0 to y.

Antal,Piszhora (1996) in On chemical distances in supercritical Bernoulli perco-

lation show that if 0 and y are in the same component, then

D(0, y)

|y|
≤ ρ(p, d)

with probability tending to 1 as |y| → ∞
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31. Monday, November 26

Goal: Proving the uniqueness of infinite open cluster. In Aizenmann-Kesten-

Newman Theorem this holds under mild conditions.

Lemma 31.1. Let Λ be a connected, locally finite, finite type ( V (Λ) has finitely

many orbits under aut(Λ)), infinite graph. Let E ⊂ {0, 1}V (Λ) be an automorphism

invariant event. Then PrsΛ,p[E] = Pr[E] ∈ {0, 1}.

Proof. Fix ε > 0. Since E is measurable, there exists an event EF which only

depends on the states of finitely many sites F , and such that Pr(E∆EF ) ≤ ε.

(Exercise!). Let x0 ∈ V (Λ), and let

M = max{d(x0, y) : y ∈ F}.

Since Λ is locally finite

B2M (x0) = {z : d(x0, x) ≤ 2M}

is finite. Let x be a site equivalent to x0 (x and x0 are the same type) such that

d(x, x0) > 2M . Let ϕ(x0) = x. For y ∈ F , we have

d(x0, ϕ(y)) ≥ d(x0, ϕ(x0))− d(ϕ(x0), ϕ(y))

= d(x0, x)− d(x0, y)

> 2M −M = M,

so ϕ(y) 6∈ F . Since F ∩ ϕ(F ) = ∅, the events EF and Eϕ(EF ) are independent.

Then,

Pr[EF ∩ ϕ(EF )] = Pr[EF ]Pr[ϕ(ef )] = Pr[EF ]2.

Since Pr[A]− Pr[B] ≤ Pr[A∆B] we have∣∣Pr[E]− Pr[EF ]2
∣∣ = |Pr[E ∩ E]− Pr[EF ∩ ϕ(EF )]|

≤ Pr[(E ∩ E)∆(EF ∩ ϕ(EF ))]

For any sets A,B,C,D

(A ∩B)∆(C ∩D) ⊂ (A∆C) ∪ (B∆D).

So,

|Pr[E]− Pr[EF ]2| ≤ Pr[E∆EF ] + Pr[E∆ϕ(EF )]

= Pr[E∆EF ] + Pr[ϕ(E)∆ϕ(EF )] (E is automorphism invariant)

= 2Pr[E∆EF ] ≤ 2ε

Since |Pr[EF ]− Pr[E]| ≤ Pr[E∆EF ] ≤ ε we have

Pr[E]−Pr[E]2 ≤
∣∣Pr[E]− Pr[E]2

∣∣ ≤ ∣∣Pr[E]− Pr[EF ]2
∣∣+∣∣Pr[EF ]2 − Pr[E]2

∣∣ ≤ 2ε+2ε = 4ε.
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Since ε is arbitrary, we have Pr[E]− Pr[E]2 = 0, so Pr[E] ∈ {0, 1}. �

Lemma 31.2. Let Λ be a connected, infinite, locally finite,finite type graph. Let

p ∈ (0, 1). Then either

• Pr[I0] = 1, or

• Pr[I1] = 1, or

• Pr[I∞] = 1,

where Ik is the event that there are exactly k infinite ope clusters.

Proof. Fix x0 ∈ V (Λ). Let 2 ≤ k <∞. Assume Pr[Ik] > 0. Let

Tn,k := Ik ∩ { every infinite cluster intersects the ball Bn(x0)}.

Note that Ik = ∪n≥1Tn,k since ∪n≥1Bn(x0) = V (Λ). If we assume Pr[Ik] > 0, then

Pr[Tn,k] > 0 for some n. Also Tn,k is the union of disjoint events

Tn,k,~s = Tn,k ∩ {S = ~s}

where S denotes the state of sites in Bn(x0). So, there is an ~s such that Pr[Tn,k,~s] is

positive. If w ∈ Tn,k,~s, let w′ be the configuration obtained by changing the closed

sites in ~s to open. Then w′ ∈ I1, so

Pr[I1] ≥ Pr[{w′ : w ∈ Tn,k,~s}]

≥
(

p

1− p

)c
Pr[Tn,k,~s] > 0,

where c denotes the number of closed sites in ~s. By previous lemma, if Pr[Ik] > 0

for some 2 ≤ k <∞ then

Pr[I1] = Pr[Ik] = 1,

so I1 ∩ Ik = ∅. �

Lemma 31.3. let G be a finite graph with k components. Let

L ⊂ V (G), C = {c1, . . . , cs} ⊂ V (G), and L ∩ C = ∅

such that at least one ci is in each component of G and deleting Ci disconnects its

component into smaller components, at least mi ≥ 2 of which contain vertices of

L. Then,

|L| ≥ 2k +

s∑
i=1

(mi − 2).

Proof. Suffices to assume G is connected, i.e., k = 1. Removing an edge only

increases the number of components of G− ci, so assume G is minimal wrt G being

connected and containing C ∪ L. G is a tree, all leaves are in L. But for a tree

number of leaves = 2 +
∑
v

d(v)− 2

where the sum is taken over all internal vertices. �
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32. (Wednesday, Nov. 28)

32.1. Amenability. Today, we will discuss the Aizenman-Kesten-Newman Theo-

rem. We begin by making a variation on a very standard definition.

Definition 32.1. (1) As usual, if X is some metric space, and x ∈ X, let

Bn(x) denote the open balls of radius n centered at x.

(2) Similarly, let Sn(x) denote the sphere of radius n; i.e., those points exactly

n units from x.

(3) Say that an infinite, locally finite graph is amenable if for all x ∈ X,

|Sn(x)|
|Bn(x)|

→ 0 as n→∞.

Compare this definition to the definition of an amenable group. Recall (see, e.g.,

[5], Section 11.1) that every locally compact (Hausdorff) groupG has a left-invariant

measure, called a Haar measure, that is unique up to constant multiplication. We

will use λ to refer to one such measure. Recall a piece of notation: for S a subset

of a group G and x ∈ G, xS := {x · s : s ∈ S}.

Definition 32.2. A locally compact group G is amenable provided that for every

compact K ⊂ G and for all ε > 0 one can find a set U ⊂ G with 0 < λ(U) < ∞
with the property that for all x ∈ K,18

λ(U∆xU)

λ(U)
< ε.

In other words, no matter how large a compact set of shifts is, there is a finite-

measure set that is moved very little by it. For example, we can take G = (Z,+)

with the usual discrete topology and counting measure, and for any K ⊂ [−n, n]

and for any ε > 0, let N =
⌈
n
ε

⌉
+ 1 and U = [−N,N ].19 Then for all x ∈ K,

|x| < n, so
λ(U∆(x+ U))

λ(U)
≤ 2n

2N + 1
<

n

N
� ε.

In short, the set does not get moved because it does not have a large bound-

ary. In fact, this correspondence with the “isoperimetric inequality” formulation of

amenability of graphs is not accidental.

Theorem 32.3. A locally compact (Hausdorff) group G is amenable if and only if

every Cayley graph is amenable as a graph.

Sadly, the only place online where I can find a reference is the statement on

a conference website, [10] (with a slightly more restrictive definition of amenable

graph).

18Recall that ∆ denotes the symmetric difference of sets.
19Recall that dxe is the ceiling function, the least integer greater than or equal ot x.
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32.2. Theorem. Recall that Ik denotes the event that there are exactly k infinite

clusters in a random graph, where 0 ≤ k ≤ ∞. For convenience, we declare I≥k to

denote the event that there are at least k infinite clusters. Also recall that for Λ a

(countably?) infinite graph, PrsΛ,p denotes the site-percolation on Λ where vertices

are included with probability p.

We now come to the main theorem. Rather than the original proof, we follow

the proof of Burton and Kane (1989), as discussed in [3].

Theorem 32.4 (AKN, 1987). Let Λ be a connected, locally finite, finite type,

infinite, amenable graph. Let 0 < p < 1. Then

(5) either PrsΛ,p(I0) = 1 or PrsΛ,p(I1) = 1.

Recall from last time that using all the assumptions except amenability, we get

the weaker statement

(6) PrsΛ,p(I0) = 1,PrsΛ,p(I1) = 1, or PrsΛ,p(I∞) = 1.

Therefore, we must rule out the possibility of infinitely many infinite-size com-

ponents.20 To do so, we must use a technical lemma on cut-sets of vertices and the

sets they separate.

Lemma 32.5. Let G be a finite graph with k components. Suppose that there exists

L ⊆ V (G), and C = {c1, c2, . . . , cs} ⊆ V (G), with the following properties:

(1) L ∩ C = ∅
(2) at least one ci is in each component of G,

(3) for each i, 1 ≤ i ≤ k, ci is a cut–vertex, and the graph induced from G with

vertex-set V (G) \ {ci} disconnects its component into smaller components,

mi ≥ 2 of which contain vertices of L.

Then |L| ≥ 2k +

s∑
i=1

(mi − 2).

32.3. Proof of the AKN Theorem. We will demonstrate that PrsΛ,p(I∞) = 0 in

the amenable case by showing that PrsΛ,p(∪k≥3Ik) = 0. By the above, PrsΛ,p(I2) = 0

already, so this suffices. Our proof is by contradiction; suppose that PrsΛ,p(∪k≥3Ik) 	
0.

Fix x0 ∈ V (Λ). Let X0 ⊂ V (Λ) be the set of vertices equivalent to x0 under

automorphisms.21 Recall by the locally-finite assumption that there are only finitely

many such equivalence classes.

Since Λ is connected, we have that V (Λ) = ∪r≥1Br(x0); that is, the vertex-set

is covered by various metric balls centered at x0. Since PrsΛ,p(∪k≥3Ik) 	 0 by

20This can happen, for example, when Λ = F2, the free group/graph on two generators.
21i.e., y ∈ X0 if and only if there exists φ ∈ Aut(Λ) with φ(x0) = y.
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Figure 3. Illustration of Tr(x)

assumption, there is a large enough r such that with positive probability, Br(x0)

contains sites from at least 3 infinite open clusters (since if this did not hold, with

high probability no ball would contain vertices of three open clusters, and by the

covering property, the graph would not have as many as three infinite open clusters).

Fix one such r, and let Tr(x) be the event that both of the following occur:

(1) Every site in Br(x) is open.

(2) There exists an infinite cluster, O, such that when all the sites in Br(x) are

clused, O is disconnected into at least three infinite open clusters.

An illustration is given in Figure 3.

Proposition 32.6. Pr(Tr(x0)) =: a > 0. In fact, for all sites x ∈ X0, we have

Pr(Tr(x)) = a for some a > 0.

Proof. First, note that since every x ∈ X0 is moved by graph automorphisms to

x0, we have Pr(Tr(x)) = Pr(Tr(x0)) for all x ∈ X0. Thus, we immediately reduce

to the situation at x0.
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Br(x0) contains sites from at least 3 infinite open clusters with nonzero prob-

ability by assumption. Further, every configuration in ∪k≥3Ik creates a new con-

figuration in Tr(x0) by changing all the sites in Br(x0) to open.22 Unfortunately,

the map is not injective, and also not necessarily measure-preserving. We must,

therefore, determine how the map works with respect to the measure.

To be precise, let f be the map of configurations of Λ, that switches every

site in Br(x0) to open. This map is clearly 2|Br(x0)| : 1. By the above, f maps

∪k≥3Ik inside Tr(x0), so we wish to show that f maps positive-measure sets to

positive-measure sets. Further, for all of the configurations 2|Br(x0)| of Br(x0),

switching all closed vertices to open changes the probability by a multiplicative

factor of

(
p

1− p

)m
, where 0 ≤ m ≤ |Br(x0)| denotes the number of closed

vertices. Therefore, if p ≥ 1
2 , then for all subsets E of the configurations of Λ,

Pr(f(E)) ≥ Pr(E). If p < 1
2 , then Pr(f(E)) ≥

(
p

1− p

)|Br(x0)|

Pr(E), since at

worst |Br(x0)| many switches from closed to open occur for any element of E. �

To continue the main proof, for any n ≥ r, let W = W (n) be a subset of X0 ∩
Bn−r(x0) maximal with respect to the property that the balls {B2r(w) : w ∈W}
are disjoint. Therefore, by maximality, if w′ ∈ X0 ∩ Bn−r(x0), and w′ 6∈ W , there

exists w1 ∈W with d(w,w′) < 4r.23

Now, as Λ is connected and of finite type, there exists a constant ` such that

every site is within a distance ` of a site in X0; else, the sequence of points farther

and farther from sites in X0 would of necessity be in different equivalence classes

under automorphism, violating the finite-type assumption. Therefore, if we now

set n ≥ r+`, every y ∈ Bn−r−`(x0) is within ` units of some w′ ∈ X0∩Bn−r(x0).24

Therefore, since w′ is either a member of W or within 4r of a member of W , y is

strictly less than 4r+ ` units away from some w ∈W . Therefore, for n ≥ r+ `, the

balls ∪w∈W {B4r+`(w)} cover Bn−r−`(x0). By a simple counting argument, then

(and noting that all elements in W are elements of X0, hence have the same type

as x0, so that the cardinality of given-radius balls around any w ∈ W ⊂ X0 have

22Since every site is forced open, we create a single open cluster O from the infinite open

clusters we had before. If then every site in the ball were converted to closed, the remaining parts

of the three (or more) infinite open clusters would remain open and infinite; thus, O would be

disconnected into three or more pieces.
23Otherwise, we could adjoin w′ to W , and the open, radius-2r balls around each point would

be disjoint, since the minimum distance between w′ and any other w is 4r; this is just a standard

triangle-inequality argument. Yet this would violate maximality of W .
24The membership in X0 follows from the previous sentence; the membership in Bn−r(x0)

follows from the triangle inequality.
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the same cardinality as a same-sized ball around x0),

|W | ≥ |Bn−r−`(x0)|
|B4r+`(x0)|

.

Yet we also have, by Λ locally finite and of finite type, that ∆ = max
v∈V (Λ)

{deg(v)} <

∞. Therefore, we also have by a naive counting argument that

|Bn+1(x0)| ≤ |Bn−r−` ·
(
1 + ∆ + ∆2 + · · ·+ ∆r+`+1

)
Putting the inequalities together, we have that there exists some c ≥ 0 such that

for all n ≥ r + `, |W | ≥ c · |Bn+1(x0)|. For such n, then,

|W | ≥ c · |Bn(x0)|
|Sn(x0)|

|Sn+1(x0)|.

Finally using the amenability hypothesis, we know that as n→∞,
|Sn(x0)|
|Bn(x0)|

→ 0,

and hence
|Bn(x0)|
|Sn(x0)|

→ ∞. Therefore, there exists N0 ≥ r + ` such that for all n ≥

N0,
|Bn(x0)|
|Sn(x0)|

≥ (ac)−1, where c is as above, and recalling that a = Pr(Tr(x0)) > 0.

Therefore,

|W | ≥ a−1|Sn+1(x0)|, if n ≥ N0

To continue, declare, for any x ∈ V (λ) to be a cut–3–ball, or more succintly a

cut–ball, if Tr(x) holds.25 Recall that for all w ∈W ⊂ X0, Tr(w) = Tr(x0) = a > 0

by assumption and the common type of vertices in x0. Therefore, by the linearity

of expectation, for n ≥ N0,

E(# cut-balls in W ) =
∑
w∈W

Pr(Tr(w)) = a|W | ≥ |Sn+1(x0)|

Note that this reduces, for any fixed n ≥ N0, to the configurations on the finite set

W : for some configuration ω of W ,26 for any fixed n ≥ N0, with positive probability,

we have that

(7) s(ω) := (# cut-balls in W ) ≥ |Sn+1(x0)|

This is one of the inequalties to get a contradiction.

To get an inequality going the other direction, note that the turn towards the

emphasis on cut-balls makes it possible to consider reducing the graph to a finite

variant to which we can apply the lemma we mentioned at the beginning.

For any configuration χ of Λ agreeing with ω on W (for n = N0, say), let O(χ)

denote the union of all open clusters intersecting Bn(x0). Define χ′ to agree with χ,

but changing all sites in the cut-balls centered at points in W from open to closed.

25That is, Br(x) is open and part of an infinite open component, but when the vertices in it

are set to closed, it splits into at least 3 pieces.
26and since W is a finite set, all configurations of it occur with positive probability
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Then the infinite open clusters in O(χ) are disconnected into several open clusters.

Let L1, . . . ,  Lt denote the infinite clusters in χ′ (at most 3 per cut-ball, at least 3

total with positive probability by assumption), and let F1, . . . , Fu denote the finite

clusters in χ′. Each Li contains a site in Sn+1(x0) (by connectivity arguments, since

all the cut-balls of radius r centered at elements of W ⊂ Bn−r(x0) are contained in

Bn(x) by the triangle inequality), and distinct clusters must pass through distinct

points of the boundary Sn+1(x0), so

(8) t ≤ |Sn+1(x0)|

Name the cut-balls C1, . . . , Cs–note that they are disjoint, since W was defined

so that the 2r-balls around each w ∈ W were disjiont. Define a finite graph H

depending on χ’s and χ′’s configurations on Bn(x0) as follows: contract each Ci to

a single vertex ci, each Fj to a single vertex fj , and each Lk to a single vertex `k.

Connect each ci to the fj ’s and/or `k’s depending on whether or not Ci, Fj , and

Lk were adjacent in the configuration χ (note that there are no edges between the

fj ’s and `k’s, since they are separated components in χ′ by hypothesis). Certainly,

L = ∪tk=1{lk} and C = ∪si=1{ci} are disjoint by definition. The infinite components

of Oχ correspond to components of H containing at least one vertex in L. By each

Ci a cut-ball, deleting Ci from the configuration χ of Λ disconnected its component

into at least 3 infinite open clusters, so deleting ci from H disconnects its component

into at least mi ≥ 3 components containing vertices of L. Therefore, the hypotheses

of the lemma are satisfied, so we may apply the lemma, and conclude that

(9) t = |L| ≥ 2 +

s∑
i=1

(mi − 2) ≥ 2 +

s∑
i=1

1 = 2 + s.

Note that although t and s depend on χ, by hypothesis, with positive probability,

s is at least 1 and t is at least 3, since Tr(x0) = a > 0 by assumption, so that any

vertex in W is a cut-ball with positive probability. Combining Equations 7, 8, and

9, we have

|Sn+1(x0)| ≥ t ≥ s+ 2 ≥ |Sn+1(x0)|+ 2

0 ≥ 2

This is a contradiction. Therefore, PrsΛ,p(∪k≥3Ik) = 0. �

Note that the above techniques can be used to show that θx(p), the probability

that x is in an infinite open cluster under (site-)percolation with probability p, is

continuous in p, except possibly at the critical probability p = pc.

32.4. For More Information. For more information about the very, very many

equivalent formulations of amenability, a taste is given by [13].
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The conference hinted at in [10] has a fuller writeup in [11]. In particular, the

work of Mark Sapir, and his student Iva Kozáková, is mentioned with regard to

percolation theory.
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33. (Monday, December 3)

Future directions for random graphs

33.1. More flexible model of random graphs - especially for application.

– theoretical cognitive neurosciences

(see Kologrov, Barzdin, 1967)

– epidemiology

– computer science

(model www, social network)

– Topological data analysis

(see Carlson’s survey article “ Topology and data”) in Bulletin of AMS.

persistent homology)

33.2. Probability Method. Randomness is a nice way to prove existence.

• Higher-dimensional expanders

– Buser-Cheeger inequalities

λ2 =smallest positive eigenvalue of L(G)

h =Cheeger numer, expansion constant

Lplacian of k-forms, δd+ dδ, for analysis of h (see Dotterrer, Kahle)

– Application of higher dimensional expanders

– Random examples in DK have, for example,

f1 =

(
n

2

)
, f2 = n2 log n.

– Can we find random expanders with f2 = O(f2)?

• Topological Turan theory (extream in graph theory)

– Extreme in graph theory ex(n;H) := max # of edges with n vertices and

no H-subgroups.

– Turan theorem characterizes for H = Km.

– Erdös -Stone for non bipartite group.

– Easier questions ex(n; cycles) = n− 1

• 2-dimensional simplicial complxes

– Let S = 2−complex on n-vertices. How may two dimensional faces f(n)

can you put in with no embedded copies of S2.

– Sos, Erdös, Brown, “ On the existence of triangulated spheres in 3 groups...”

f(n) = n5/2

– (Linial) What about torus?

You can get ∼ n5/2 faces with no torus with modified random constructions.

Is that optimal exponent?

• Random groups
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– < g1, g2, · · · , gn︸ ︷︷ ︸
generators

| r1, r2, · · · , rm︸ ︷︷ ︸
random relations

>

– Triangular model ri are all of length 3.

– Total number of possible words of length 3∼ n3.

– Let m = (n3)λ, where λ ∈ (0, 1) is the density.

– Known :

- If λ > 1
2 , then w.h.p group is trivial. (exercise)

- (Żuk) If λ < 1
2 , then w.h.p (word) hyperbolic group ∃c > o such that

A(r) ≤ CL(γ) for all contractible γ

- If 1
3 < λ < 1

2 , the group has Kazhdan’s property w.h.p.

– Is every hyperbolic group residually finite?

- Intersections of all finite index subgroup is trivial.

- Conjectured answer is NO. What about random groups?
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