Math 6502 : HW \# 2

All book problems are from Alon \& Spencer, 4th edition.
$(*)=$ required,$\left({ }^{* *}\right)=$ optional, $\left({ }^{* * *}\right)=$ very optional $/$ research problem

1. (*) Chapter 1. \#7
2. (*) Chapter 1. \#8
3. (**) Chapter 1. \#6
4. (**) Let $F(n)$ denote the maximum number of Hamiltonian paths in a tournament on n vertices. What is the best upper bound you can come up with for $F(n)$? Note that $n!$ is a trivial upper bound. We showed in class the lower bound

$$
F(n) \geq n!2^{-(n-1)}
$$

5. (***) We showed in class that for every set A of n nonzero integers, there is a subset $B \subseteq A$ such that B is sum-free and $|B|>n / 3$. Let $G(n)$ denote the largest number N such that every set of n nonzero integers contains a sum-free subset of size at least N. Is $G(n)-n / 3$ bounded?
