Math 4575 : HW \#6

Chapter 7: \#1, 2, 8, 31, 32, 33, 37, 38, 39, 40

- \#1

Let $f_{0}, f_{1}, f_{2}, \ldots$ denote the Fibonacci sequence. By evaluating each of the following expressions for small values of n, conjecture a general formula and then prove it, using mathematical induction and the Fibonacci recurrence.
(Comment: we observe the convention that $f_{0}=0, f_{1}=1$, etc.)
(a)

$$
f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}
$$

The proof is by induction. The formula holds for $n=1$, and suppose it holds for some $n \geq 1$, adding $f_{2 n+1}$ to both sides gives

$$
f_{1}+f_{3}+\cdots+f_{2 n+1}=f_{2 n}+f_{2 n+1}=f_{2 n+2}
$$

so the identity holds for $n+1$ as well. By induction, the result holds for all $n \geq 1$.
(b)

$$
f_{0}+f_{2}+\cdots+f_{2 n}=f_{2 n+1}-1
$$

The formula holds for $n=0$, and suppose it holds for some $n \geq 0$, adding $f_{2 n+2}$ to both sides gives

$$
f_{0}+f_{2}+\cdots+f_{2 n}+f_{2 n+2}=f_{2 n+1}+f_{2 n+2}-1=f_{2 n+3}-1
$$

so the identity holds for all $n \geq 0$ by induction.
(c)

$$
f_{0}-f_{1}+f_{2}-\cdots+(-1)^{n} f_{n}=(-1)^{n} f_{n-1}-1
$$

Again, we proceed by induction. If we make the (reasonable) convention that $f_{-1}=1$, then it holds for $n=0$. One could also have the base case be $n=1$. Assuming that the formula holds for n, add $(-1)^{n+1} f_{n+1}$ to both sides to obtain

$$
\begin{aligned}
f_{0}-f_{1}+f_{2}-\cdots+(-1)^{n+1} f_{n+1} & =(-1)^{n} f_{n-1}+(-1)^{n+1} f_{n+1}-1 \\
& =(-1)^{n+1}\left(f_{n+1}-f_{n-1}\right)-1 \\
& =(-1)^{n+1} f_{n}-1
\end{aligned}
$$

as desired.
(d)

$$
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

The formula holds for $n=0$. Now suppose it holds for n and add f_{n+1}^{2} to both sides. We have

$$
\begin{aligned}
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n+1}^{2} & =f_{n} f_{n+1}+f_{n+1}^{2} \\
& =f_{n+1}\left(f_{n}+f_{n+1}\right) \\
& =f_{n+1} f_{n+2}
\end{aligned}
$$

so it holds with $n+1$ as well. By induction it holds for every $n \geq 0$.
\#2
Prove that the nth Fibonacci number is the integer that is closest to the number

$$
\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

We have the formula

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

so the desired result follows if we know that

$$
\left|\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right|<\frac{1}{2},
$$

but this is clear. Indeed, $(1 / \sqrt{5})<1 / 2$ and $\left|((1-\sqrt{5}) / 2)^{n}\right| \leq 1$ for $n \geq 0$.

\# 8

Consider a 1-by- n chessboard. Suppose we color each square of the chessboard with one of the two colors red and blue. Let h_{n} be the number of colorings in which no two squares that are colored red are adjacent. Find and verify a recurrence relation that h_{n} satisfies. Then derive a formula for h_{n}.

We claim that $h_{n}=h_{n-1}+h_{n-2},(n \geq 2)$, and $h_{0}=1$ and $h_{1}=2$.
The recurrence is checked as follows. Take a sequence of length n where $n \geq 2$. If the last square is blue, remove it to obtain a sequence of length $n-1$. If the last square is red, then the previous square must be blue, so remove both tiles to obtain a sequence of length $n-2$. This process is reversible: given a sequence of length $n-2$, one can append blue and red tile (in this order), and given a sequence of length $n-1$, one can append a blue tile. So we have $h_{n}=h_{n-1}+h_{n-2}$. The
initial conditions are straightforward: there is one (empty) tiling of the 1-by-0 chessboard, and both tilings of the 1 -by- 1 chessboard are allowable, so $h=1$ and $h_{2}=2$.
This has the same recurrence as the Fibonacci numbers, and almost the same initial values, except shifted. In other words $h_{n}=f_{n+2}$.
Then our formula for the Fibonacci numbers implies that

$$
h_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}
$$

Other forms for the answer are possible, for example if you would rather have n in the exponent than $n+2$, after a little algebra we have

$$
h_{n}=\frac{5+3 \sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{5-3 \sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

- \#31

Solve the recurrence relation $h_{n}=4 h_{n-2},(n \geq 2)$ with initial values $h_{0}=0$ and $h_{1}=1$.

Writing the first few values, we have

$$
0,1,0,4,0,16,0,64,0,250,0 \ldots
$$

We can guess the formula, which then follows by strong induction.

$$
\begin{gathered}
h_{n}=0 \text { if } n \text { is even, and } \\
h_{n}=4^{(n-1) / 2}=2^{n-1} \text { if } n \text { is odd. }
\end{gathered}
$$

Other forms of the answer are possible. For example,

$$
h_{n}=\frac{1}{4} 2^{n}-\frac{1}{4}(-2)^{n}
$$

You can obtain this by solving the recurrence with standard methods, since it is linear homogeneous with constant coefficients.

- \#32

Solve the recurrence relation $h_{n}=(n+2) h_{n-1},(n \geq 1)$ with initial value $h_{0}=2$.

The first few terms of the sequence are

$$
2,2 \times 3,2 \times 3 \times 4,2 \times 3 \times 4 \times 5, \ldots
$$

This looks like the factorial sequence, but shifted. Indeed, we guess $h_{n}=(n+$ $2)$! and once we observe it, it follows immediately by strong induction.

- \#33

Solve the recurrence relation $h_{n}=h_{n-1}+9 h_{n-2}-9 h_{n-3},(n \geq 3)$ with initial values $h_{0}=0, h_{1}=1$, and $h_{2}=2$.

The characteristic polynomial is $x^{3}-x^{2}-9 x+9$, which factors as

$$
(x+3)(x-3)(x-1)
$$

which has roots $\pm 3,1$. A general solution to the recurrence is given by

$$
h_{n}=c_{1} 3^{n}+c_{2}(-3)^{n}+c_{3} .
$$

Evaluating at $n=0,1,2$ gives

$$
\begin{aligned}
& 0=c_{1}+c_{2}+c_{3} \\
& 1=3 c_{1}-3 c_{2}+c_{3} \\
& 2=9 c_{1}+9 c_{2}+c_{3}
\end{aligned}
$$

Straightforward linear algebra gives $c_{1}=1 / 3, c_{2}=-1 / 12$, and $c_{3}=-1 / 4$. So

$$
h_{n}=\frac{1}{3} 3^{n}-\frac{1}{12}(-3)^{n}-\frac{1}{4} .
$$

- \#37

Determine a recurrence relation for the number a_{n} of ternary strings (made up of 0 's, 1 's, and 2's) of length n that do not contain two consecutive 0 's or two consecutive 1 's. Then find a formula for a_{n}.

The key observation is that a_{n} satisfies a recurrence, namely

$$
a_{n}=2 a_{n-1}+a_{n-2},(n \geq 2)
$$

with initial conditions $a_{0}=1$ and $a_{1}=3$. The justification for the recurrence is the following. Given a sequence of length $n-2$, one can append 22 to the end to obtain an allowable sequence of length n. Give a sequence of length $n-1$, one can append any number different from the last number in the current sequence to obtain an allowable sequence of length n. (If the sequence of length $n-1$ ends in 0 , you can add a 1 or 2 , etc.) It is easy to verify that every sequence of length n is obtain this way exactly once. Indeed, to reverse the algorithm, consider the last two digits. If they are double, they must be 22 and it came from a sequence of length $n-2$. If the digits are not doubled, then it came from a sequence of length $n-1$.
Once we have this recurrence and initial values, we can use our standard techniques. In this case, after a little calculation we find

$$
a_{n}=\frac{1}{2}(1+\sqrt{2})^{n+1}+\frac{1}{2}(1-\sqrt{2})^{n+1} .
$$

Other forms for the answer are possible. For example,

$$
a_{n}=\left(\frac{1+\sqrt{2}}{2}\right)(1+\sqrt{2})^{n}+\left(\frac{1-\sqrt{2}}{2}\right)(1-\sqrt{2})^{n}
$$

- \#38

Solve the following recurrence relations by examining the first few values for a formula and then proving your conjectured formula by induction.
(a) $h_{n}=3 h_{n-1},(n \geq 1) ; h_{0}=1$.

$$
1,3,9,27,81,241,729, \ldots
$$

We guess $h_{n}=3^{n}$. Once we make the guess, the proof holds by induction.
(b) $h_{n}=h_{n-1}-n+3,(n \geq 1) ; h_{0}=2$.

$$
2,4,5,5,4,2,-1,-5, \ldots
$$

We guess that h_{n} is quadratic, i.e. $h_{n}=a n^{2}+b n+c$ for some constants a, b, and c that don't depend on n. (We didn't talk about it in class, but the following idea is covered in this chapter of the book: the "difference sequence" for a polynomial of degree n should be a polynomial of degree $n-1$. If so, a little computation gives that $a=-1 / 2, b=5 / 2$, and $c=2$. Verifying the recurrence is now straightforward proof by induction. We have

$$
h_{n}=-\frac{1}{2} n^{2}+\frac{5}{2} n+2
$$

(c) $h_{n}=-h_{n-1}+1,(n \geq 1) ; h_{0}=0$

$$
0,1,0,1,0,1,0,1, \ldots
$$

It seems that $h_{n}=0$ for n even and $h_{n}=1$ for n odd, easily proved by induction. (This answer may be written in various forms.)
(d) $h_{n}=-h_{n-1}+2,(n \geq 1) ; h_{0}=1$

$$
1,1,1,1,1, \ldots
$$

It seems that $h_{n}=1$ for every $n \geq 0$. The proof? By induction.
(e) $h_{n}=2 h_{n-1}+1,(n \geq 1) ; h_{0}=1$

$$
1,3,7,15,31,63, \ldots
$$

We try $h_{n}=2^{n+1}-1$. The result is easily verified by induction.

- \#39

Let h_{n} denote the number of ways to perfectly cover a $1 \times n$ board with monominoes and dominoes in such a way that no two dominoes are consecutive. Find, but do not solve, a recurrence relation and initial conditions satisfied by h_{n}.

We claim that

$$
h_{n}=h_{n-1}+h_{n-3},(n \geq 3)
$$

with initial conditions $h_{0}=1, h_{1}=1$, and $h_{2}=2$. Indeed, if the rightmost tile is a monomino, remove it to obtain a tiling of a $1 \times(n-1)$ board. If it is a domino and $n \geq 3$ then the domino must have been preceded by a monomino. So remove both the domino and monomino to obtain a tiling of an $1 \times(n-3)$ board.
This algorithm is reversible. Given a tiling of a $1 \times(n-1)$ board, one can always add a monomino on the right. And given a tiling of a $1 \times(n-3)$ board, one can always add a monomino and then a domino. So this gives a bijection between sequences of length n and the disjoint union of sequences of length $n-1$ and $n-3$.

- \#40

Let a_{n} equal the number of ternary strings of length n made up of 0 's, 1 's, and 2 's, such that the substrings $00,01,10$, and 11 never occur. Prove that $a_{n}=a_{n-1}+2 a_{n-2},(n \geq 2)$, with $a_{o}=1$ and $a_{1}=3$. Find a formula for a_{n}.

Given any allowable sequence of length $n-1$, one can append a 2 to the end to obtain an allowable sequence of length n. Given an allowable sequence of length $n-2$, one can append 21 or 20 an obtain an allowable sequence of length n.
This algorithm is reversible. Given an allowable sequence of length $n \geq 2$, if it ends in 0 or 1 , it must end with 20 or 21 respectively. Removing this gives a sequence of length $n-2$. If it ends in 2 , one can remove the 2 to have a sequence of length $n-1$.
Now, to solve the recurrence is straightforward. The characteristic polynomial is $x^{2}-x-2=0$, which has roots $x=2$ and $x=-1$. The general form of the solution is $a_{n}=c_{1} 2^{n}+c_{2}(-1)^{n}$. Putting in the initial conditions allows us to solve for c_{1} and c_{2}. We have

$$
a_{n}=\frac{4}{3} 2^{n}-\frac{1}{3}(-1)^{n}
$$

