Math 6501 : Problem set 2

due: Monday, October 27

(*) = required (**) = optional (***) = unsolved

Please talk to each other and use any sources that you'd like, but please cite your sources.

- 1. (*) Let $V = \{0, 1\}^d$, i.e. V is the set of all 0 1 sequences of length d. The graph on V in which two such sequences are joined by an edge if and only if they differ in exactly one position is called the *d*-dimensional cube and is sometimes denoted Q^d .
 - (a) Determine the number of edges, average degree, diameter, and girth of Q^d .
 - (b) For which d is Q^d planar?
- 2. (*) Show that a connected, plane graph with $v \ge 3$ must have at least three vertices of degree ≤ 5 .
- 3. (*) Show that a finite tree with a vertex of degree d must have at least d vertices of degree one.
- 4. (*) Let X be a graph with $\Delta(X) \leq 3$. Show that G contains X as a topological minor if and only if G contains X as a minor.
- 5. (*) Prove that for a bipartite, simple, planar graph with $v \ge 3$ vertices and e edges,

 $e \le 2v - 4,$

and conclude that the complete bipartite graph $K_{3,3}$ is not planar. If it is helpful, you may use the following fact: in a 2-connected plane graph, the boundary of every face is a cycle.

- 6. (*) Suppose that *P* is a convex 3-dimensional polytope, such that every vertex has degree 3 and every face is either a pentagon or a hexagon. How many pentagonal faces does *P* have?
- 7. (*) Suppose that g = 2r + 1 is odd, and $\delta \ge 1$. Define

$$n_0(\delta, g) = 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i$$

Show that a graph of minimum degree δ and girth g has at least $n_0(\delta, g)$ vertices.

- 8. (a) (*) Classify finite trees with exactly 5 leaves, up to homeomorphism.
 - (b) (**) Classify trees with exactly 6 or 7 leaves, up to homeomorphism.
 - (c) (**) Show that the number of homeomorphism types of trees with k leaves is at least $e^{C\sqrt{k}}$ for some constant C > 0.
- 9. (*) Let cr(G) denote the crossing number of G. Prove the following elementary bounds on the crossing number of the complete graph K_n :

$$\frac{1}{5} \binom{n}{4} \le cr(K_n) \le \binom{n}{4}$$

for $n \ge 5$. Note that the lower bound is better than what is obtained from the Crossing Number Inequality. (Hint: for the lower bound, use the fact that K_5 is not planar.)

- 10. (**) A graph is said to be *outer-planar* if it can be embedded in the plane so that every vertex is in the boundary of the outer (unbounded) face. Show that G is outer-planar if and only if G contains no K_4 or $K_{2,3}$ minors.
- 11. (**) Kruskal's tree theorem tells us that the class of finite trees, partially ordered by the relation of "topological minor" is a well quasi-order. There is no infinite anti-chain. Can you construct (or at least prove the existence) of arbitrarily large finite anti-chains? That is, for every N, describe a set of N finite trees T_1, T_2, \ldots, T_n , such that none is a topological minor of any other.
- 12. (**) Give an example of an infinite sequence of graphs $\{G_i\}$ so that no graph in the sequence is a topological minor of any other graph in the sequence.
- 13. (* * *) Fáry's Theorem is that every planar graph has a straight-line representation. Does every planar graph have a straight-line representation in which all edge lengths are integers?
- 14. (a) (* * *) Let X be a countably infinite graph. Show that X contains itself as a proper minor.
 - (b) (**) Show that the above would imply the minor theorem of Robertson and Seymour: that given any infinite sequence of finite graphs G_1, G_2, \ldots , there exist indices i < j such that G_i is a minor of G_j .