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Abstract We study the expected topological properties of Čech and Vietoris–Rips
complexes built on random points in R

d . We find higher-dimensional analogues of
known results for connectivity and component counts for random geometric graphs.
However, higher homology Hk is not monotone when k > 0.

In particular, for every k > 0, we exhibit two thresholds, one where homology
passes from vanishing to nonvanishing, and another where it passes back to vanishing.
We give asymptotic formulas for the expectation of the Betti numbers in the sparser
regimes, and bounds in the denser regimes.

Keywords Random geometric graphs · Probabilistic topology · Topological data
analysis

1 Introduction

The random geometric complexes studied here are simplicial complexes built on in-
dependent and identically distributed (i.i.d.) random points in Euclidean space R

d .
We identify here the basic topological features of these complexes. In particular, we
identify intervals of vanishing and nonvanishing for each homology group Hk and
give asymptotic formulas for the expected rank of homology when it is nonvanish-
ing.

There are several motivations for studying this. The area of topological data analy-
sis has been very active lately [12, 29], and there is a need for a probabilistic null
hypothesis to compare with topological statistics of point cloud data [8].
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One approach was taken by Niyogi, Smale, and Weinberger [24], who studied
the model where n points are sampled uniformly and independently from a compact
manifold M embedded in R

d , and estimates were given for how large n must be in
order to “learn” the topology of M with high probability. Their approach was to take
balls of radius r centered at the n points and approximate the manifold by the Čech
complex; provided that r is chosen carefully, once there are enough balls to cover the
manifold, one has a finite simplicial complex with the homotopy type of the manifold,
so in particular one can compute homology groups, and so on.

The main technical innovation in [24] is a geometric method for bounding above
the number of random balls needed to cover the manifold, given some information
about the curvature of the manifold’s embedding. The assumption here is that one
already knows how large r must be, or that one at least has enough information about
the geometry of the embedding of M in order to determine r . (In a second article,
they are able to recapture the topology of the manifold, even in the more difficult
setting when Gaussian noise is added to every sampled point [25]. Still, one needs
some information about the embedding of the manifold.)

In this article we study both random Vietoris–Rips and Čech complexes for fairly
general distributions on Euclidean space R

d , and most importantly, allowing the ra-
dius of balls r to vary from 0 to ∞. We identify thresholds for nonvanishing and
vanishing of homology groups Hk and also derive asymptotic formulas and bounds
on expectations of the Betti numbers βk in terms of n and r . It is well understood
in computational topology that persistent homology is more robust than homology
alone (see, for example, the stability results of Cohen–Steiner, Edelsbrunner, and
Harer [10]), so in practice one computes persistent homology over a wide regime of
radius [29].

There is also a close connection to geometric probability and in particular to the
theory of geometric random graphs. Some of our results are higher-dimensional ana-
logues of thresholds for connectivity and component counts in random geometric
graphs due to Penrose [26], and we must also use Penrose’s results several times.
However, an important contrast is that the properties studied here are decidedly non-
monotone. In particular, for each k, there is an interval of radius r for which the
homology group Hk �= 0, and with the expected rank of homology E[βk] roughly
unimodal in the radius r , but we also show that for large enough or small enough
radius, Hk = 0.

This paper can also be viewed in the context of several recent articles on the topol-
ogy of random simplicial complexes [2, 18, 19, 21, 23, 27]. Random geometric com-
plexes provide a fairly flexible framework for random complexes, since one has the
freedom to choose the underlying density function, hence an infinite-dimensional pa-
rameter space.

The probabilistic method has given nonconstructive existence proofs, as well as
many interesting and extremal examples in combinatorics [1], geometric group the-
ory [15], and discrete geometry [22]. Random spaces will likely provide objects of
interest to topologists as well.

The problems discussed here were suggested, and the basic regimes described, in
Persi Diaconis’s MSRI talk in 2006 [11]. Some of the results in this article may have
been discovered concurrently and independently by other researchers; it seems that
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Yuliy Barishnikov and Shmuel Weinberger have also thought about similar things
[3]. However, we believe that this article fills a gap in the literature and hope that it is
useful as a reference.

1.1 Definitions

We require a few preliminary definitions and conventions.

Definition 1.1 For a set of points X ⊆ R
d and r > 0, define the geometric

graph G(X; r) as the graph with vertices V (G) = X and edges E(G) = {{x, y} |
d(x, y) ≤ r}.
Definition 1.2 Let f : R

d → R be a probability density function, let x1, x2, . . . be a
sequence of independent and identically distributed d-dimensional random variables
with common density f , and let Xn = {x1, x2, . . . , xn}. The geometric random graph
G(Xn; r) is the geometric graph with vertices Xn and edges between every pair of
vertices u,v with d(u, v) ≤ r .

Throughout the article we make mild assumptions about f ; in particular we as-
sume that f is a bounded Lebesgue-measurable function and that

∫
Rd

f (x) dx = 1

(i.e., that f actually is a probability density function).
In the study of geometric random graphs [26] r usually depends on n, and one

studies the asymptotic behavior of the graphs as n → ∞.

Definition 1.3 We say that G(Xn; rn) asymptotically almost surely (a.a.s.) has prop-
erty P if

Pr
(
G(Xn; rn) ∈ P

) → 1

as n → ∞.

The main objects of study here are the Čech and Vietoris–Rips complexes on Xn,
which are simplicial complexes built on the geometric random graph G(Xn; r). A his-
torical comment: the Vietoris–Rips complex was first introduced by Vietoris in order
to extend simplicial homology to a homology theory for metric spaces [28]. Eliyahu
Rips applied the same complex to the study of hyperbolic groups, and Gromov popu-
larized the name Rips complex [14]. The name “Vietoris–Rips complex” is apparently
due to Hausmann [17].

Denote the closed ball of radius r centered at a point p by B(p, r) = {x |
d(x,p) ≤ r}.
Definition 1.4 The random Čech complex C(Xn; r) is the simplicial complex with
vertex set Xn and σ a face of C(Xn; r) if

⋂
xi∈σ

B(xi, r/2) �= ∅.
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Definition 1.5 The random Vietoris–Rips complex R(Xn; r) is the simplicial com-
plex with vertex set Xn and σ a face if

B(xi, r/2) ∩ B(xj , r/2) �= ∅
for every pair xi, xj ∈ σ .

Equivalently, the random Vietoris–Rips complex is the clique complex of G(Xn; r).
We are interested in the topological properties, in particular the vanishing and non-

vanishing, and expected rank of homology groups, of the random Čech and Vietoris–
Rips complexes. Qualitatively speaking, the two kinds of complexes behave very
similarly. However there are important quantitative differences, and one of the goals
of this article is to point these out.

Throughout this article, we use Bachmann–Landau big-O , little-O , and related
notations. In particular, for nonnegative functions g and h, we write the following.

• g(n) = O(h(n)) means that there exist n0 and k such that for n > n0, we have
that g(n) ≤ k · h(n) (i.e., g is asymptotically bounded above by h, up to a constant
factor).

• g(n) = Ω(h(n)) means that there exist n0 and k such that for n > n0, we have
that g(n) ≥ k · h(n) (i.e., g is asymptotically bounded below by h, up to a constant
factor).

• g(n) = Θ(h(n)) means that g(n) = O(h(n)) and g(n) = Ω(h(n)) (i.e., g is as-
ymptotically bounded above and below by h, up to constant factors).

• g(n) = o(h(n)) means that for every ε > 0, there exists n0 such that for n > n0,
we have that g(n) ≤ ε · h(n) (i.e., g is dominated by h asymptotically).

• g(n) = ω(h(n)) means that for every k > 0, there exists n0 such that for n > n0,
we have that g(n) ≥ k · h(n) (i.e., g dominates h asymptotically).

When we discuss homology Hk , we mean either simplicial homology or singular
homology, which are isomorphic. Our results hold with coefficients taken over any
field.

Finally, we use μ(S) to denote the Lebesgue measure of a measurable set S ⊂ R
d ,

and ‖x‖ to denote the Euclidean norm of x ∈ R
d .

2 Summary of Results

For random geometric graphs [26] there are fundamentally four regimes sparce, crit-
ical, dense, and connected. The following is a summary of our results in each regime.

In the subcritical and critical regimes, our results hold fairly generally, for any
distribution on R

d with a bounded measurable density function.
In the subcritical regime, r = o(n−1/d), the random geometric graph G(Xn; r)

(and hence the simplicial complexes we are interested in) consists of many discon-
nected pieces. Here we exhibit a threshold for Hk , from vanishing to nonvanishing,
and provide an asymptotic formula for the kth Betti number E[βk], for k ≥ 1.

In the critical regime, r = Θ(n−1/d), the components of the random geometric
graph start to connect up, and the giant component emerges. In other words, this is
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the regime wherein percolation occurs, and it is sometimes called the thermodynamic
limit. Here we show that E[βk] = Θ(n) and Var[βk] = Θ(n) for every k.

In the supercritical and connected regimes, our results are for uniform distributions
on smoothly bounded convex bodies in dimension d .

In the supercritical regime, r = ω(n−1/d). We put an upper bound on E[βk] show-
ing that it grows sublinearly, hence the linear growth of the Betti numbers in the crit-
ical regime is maximal. Here our results are for the Vietoris–Rips complex, and the
method is a Morse-theoretic argument. The combination of geometric probability and
discrete Morse theory used for these bounds is the main technical contribution of the
article.

The connected regime, r = Ω((logn/n)1/d), is where G(Xn; r) is known to be-
come connected [26]. In this case we show that the Čech complex is contractible and
the Vietoris–Rips complex is k-connected for any fixed k.

Despite nonmonotonicity, we exhibit thresholds for vanishing of Hk . For every
k ≥ 1, there is an interval in which Hk �= 0 and outside of which Hk = 0, so every
higher homology group passes through two thresholds.

The rest of the article is organized as follows. In Sect. 3 we consider the subcritical
regime of radius, in Sect. 4 the critical regime, in Sect. 5 the supercritical regime, and
in Sect. 6 the connected regime. In Sect. 7 we discuss open problems and future
directions.

3 Subcritical

For subcritical radius r , we exhibit a vanishing to nonvanishing threshold for homol-
ogy Hk , and in the nonvanishing regime compute the asymptotic expectation of the
Betti numbers βk for k ≥ 1. (The case k = 0, the number of path components, is ex-
amined in careful detail by Penrose [26, Chap. 13].) As a corollary, we also obtain
information about the threshold where homology passes from vanishing to nonvan-
ishing homology. We emphasize that the results in this section do not depend in any
essential way on the distribution on R

d , although we make the mild assumption that
the underlying density function f is bounded and measurable.

3.1 Expectation

Theorem 3.1 (Expectation of Betti numbers, Vietoris–Rips complex) For d ≥ 2,
k ≥ 1, and rn = o(n−1/d), the expectation of the kth Betti number E[βk] of the ran-
dom Vietoris–Rips complex R(Xn; r) satisfies

E[βk]
n2k+2rd(2k+1)

→ Ck

as n → ∞, where Ck is a constant that depends only on k and the underlying density
function f .

(We note that this result holds for all k, even when k ≥ d .)
Using similar methods, we also prove the following about the random Čech com-

plex.
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Theorem 3.2 (Expectation of Betti numbers, Čech complex) For d ≥ 2, 1 ≤ k ≤
d −1, and r = o(n−1/d), the expectation of the kth Betti number E[βk] of the random
Čech complex C(Xn; r) satisfies

E[βk]
nk+2rd(k+1)

→ Dk

as n → ∞, where Dk is a constant that depends only on k and the underlying density
function f .

One feature that distinguishes the Čech complex from the Vietoris–Rips complex
is that a Čech complex is homotopy equivalent to whatever it covers. (This follows
from the nerve theorem, Theorem 6.3 in this article.) So in particular Hk = 0 when
k ≥ d .

In both cases we will see that almost all of the homology is contributed from a sin-
gle source: whatever is the smallest possible vertex support for nontrivial homology.
For the Vietoris–Rips complex, this will be the boundary of the cross-polytope, and
for the Čech complex, the empty simplex.

Definition 3.3 The (k + 1)-dimensional cross-polytope is defined to be the convex
hull of the 2k + 2 points {±ei}, where e1, e2, . . . , ek+1 are the standard basis vec-
tors of R

k+1. The boundary of this polytope is a k-dimensional simplicial complex,
denoted Ok .

Simplicial complexes which arise as clique complexes of graphs are sometimes
called flag complexes. A useful fact in combinatorial topology is the following; for a
proof, see [19].

Lemma 3.4 If � is a flag complex, then any nontrivial element of k-dimensional ho-
mology Hk(�) is supported on a subcomplex S with at least 2k + 2 vertices. More-
over, if S has exactly 2k + 2 vertices, then S is isomorphic to Ok .

Recall that a subgraph H ≤ G is said to be an induced subgraph if for every pair
of vertices x, y ∈ V (H), we have that {x, y} is an edge of H if and only if {x, y} is
an edge of G.

Definition 3.5 A connected graph is feasible if it is geometrically realizable as an
induced subgraph.

For example, the complete bipartite graph K1,7 is not feasible, since it is not geo-
metrically realizable as an induced subgraph of a geometric graph in R

2, since there
must be at least one edge between the seven degree-one vertices.

Denote the number of induced subgraphs of G(Xn; r) isomorphic to H by Gn(H),
and the number of components isomorphic to H by Jn(H). Recall that f is the un-
derlying density function. For a feasible subgraph H of order k and for Y ∈ (Rd)k ,
define the indicator function hH (Y ) on sets Y of k elements in R

d by hH ((Y )) = 1
if the geometric graph G(Y,1) is isomorphic to H , and 0 otherwise. Let

μH = k!−1
∫

Rd

f (x)k dx

∫
(Rd )k−1

hH

({0, x1, . . . , xk−1}
)
d(x1, . . . xk−1).



Discrete Comput Geom (2011) 45: 553–573 559

Penrose [26] proved the following.

Theorem 3.6 (Expectation of subgraph counts, Penrose) Suppose that
limn→∞(r) = 0 and that H is a connected feasible graph of order k ≥ 2. Then

lim
n→∞ r−d(k−1)n−kE

(
Gn(H)

) = lim
n→∞ r−d(k−1)n−kE

(
Jn(H)

) = μH .

Together with our topological and combinatorial tools, Theorem 3.6 will be suf-
ficient to prove Theorem 3.1. To prove Theorem 3.2, we also require a hypergraph
analogue of Theorem 3.6, established by the author and Meckes in Sect. 3 of [20],
which we state when it is needed.

Proof of Theorem 3.1 The intuition is that in the sparse regime, almost all of the
homology is contributed by vertex-minimal spheres.

Definition 3.7 For a simplicial complex �, let ok(�) (or ok if context is clear) denote
the number of induced subgraphs of � combinatorially isomorphic to the 1-skeleton
of the cross-polytope Ok , and let õk(�) denote the number of components of �

combinatorially isomorphic to the 1-skeleton of the cross-polytope Ok .

Definition 3.8 Let f =i
k (�) denote the number of k-dimensional faces on connected

components with exactly i vertices. Similarly, let f
≥i
k (�) denote the number of k-

dimensional faces on connected components containing at least i vertices.

A dimension bound paired with Lemma 3.4 yields

õk ≤ βk ≤ õk + f
≥2k+3
k . (3.1)

One could work with f
≥2k+3
k directly, but it turns out to be sufficient to overes-

timate f
≥2k+3
k as follows. For each k-dimensional face in a component with at least

2k + 3 vertices, extend to a connected subgraph with exactly 2k + 3 vertices and(
k+1

2

) + k + 2 edges.
For example, let k = 2; then

õ2 ≤ β2 ≤ õ2 + f
≥7
2 . (3.2)

Up to isomorphism, the seventeen graphs that arise when extending a two-dimensional
face (i.e., a 3-clique) to a minimal connected graph on 7 vertices are exhibited in
Fig. 1.

In particular, f
≥7
2 ≤ ∑17

i=1 si, where si counts the number of subgraphs isomor-
phic to graph i for some indexing of the seventeen graphs in Fig. 1.

Moreover, as noted in [26], the number of occurrences of a given subgraph Γ on
v vertices is a positive linear combination of the induced subgraph counts for those
graphs on v vertices which have Γ as a subgraph.

For an example of this, let GH denote the number of induced subgraphs of G iso-
morphic to H , and let G̃H denote the number of subgraphs (not necessarily induced)
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Fig. 1 The case k = 2: the seventeen isomorphism types of subgraphs which arise when extending a
3-clique to a connected graph on seven vertices with seven edges. Each subgraph isomorphic to one of
these can contribute at most 1 to the sum bounding the error term f

≥7
2

of G isomorphic to H . If P3 is the path on three vertices and K3 is the complete
graph on three vertices, then

G̃P3 = 3GK3 + GP3 .

So for each i, we can write si as a positive linear combination of induced subgraph
counts, and every type of induced subgraphs has exactly seven vertices.

We take the expectation of both sides of (3.2), applying linearity of expectation,
to obtain

E [̃o2] ≤ E[β2] ≤ E[õ2] + E
[
f

≥7
2

] ≤ E[õ2] + E

[
17∑
i=1

si

]
≤ E[õ2] +

17∑
i=1

E[si].

For each i, E[si] = O(n7r6d), by Theorem 3.6. On the other hand, E[õ2] =
Θ(n6r5d), also by Theorem 3.6. Since we are assuming that nrd → 0 as n → ∞,
we have shown that E[f ≥7

2 ] = o(E [̃o2]). We conclude that E[β2]/E [̃o2] → 1 as
n → ∞. This gives E[β2] = Θ(n6r5d), as desired.

The proof for k ≥ 2 is the same. In general the number of graphs on 2k+3 vertices
that can arise from the algorithm above is a constant that only depends on k, so denote
this constant by ck .

So in general we will have

E [̃ok] ≤ E[βk] ≤ E[õk] + E
[
f

≥2k+3
k

] ≤ E[õk] + E

[
ck∑

i=1

si

]
≤ E[õ2] +

ck∑
i=1

E[si].

For each i = 1,2, . . . , ck , we have

E[si] = O
(
n2k+3r(2k+2)d

)

and, on the other hand,

E [̃ok] = Θ
(
n2k+2r(2k+1)d

)
.



Discrete Comput Geom (2011) 45: 553–573 561

Fig. 2 The case k = 1: the three isomorphism types of trees on five vertices. Each subgraph isomorphic

to one of these can contribute at most 4 to the sum bounding the error term f
≥5
1

Fig. 3 The regular 2k-gons prove that the 1-skeleton of the cross-poytope Ok is geometrically feasible in
the plane for every k. If r is slightly shorter than the length of the main diagonal, components combinato-
rially isomorphic to this contribute to βk in the Vietoris–Rips complex

Since nrd → 0, we conclude that E[βk]/E [̃ok] → 1 and

E[βk] = Θ
(
n2k+2r(2k+1)d

)
.

The case k = 1 is slightly different. There are several ways of extending a 2-
clique (i.e., an edge) to a connected graph on five vertices and four edges. In this
case the graph must be a tree, and there are three isomorphism types of trees on five
vertices, shown in Fig. 2. But in this case counting these subgraphs will result in an
underestimate for f

≥5
1 . However, each tree has only four edges, and so one can obtain

the bound

f
≥5
1 ≤ 4(t1 + t2 + t3),

where t1, t2, t3 count the number of subgraphs isomorphic to the three trees in Fig. 2.
The argument is then the same as in the case k ≥ 2.

This completes the proof, modulo one small concern: we must make sure that the
octahedral 1-skeletons are geometrically feasible. It is perhaps surprising that this is
the case, even when d = 2. But the regular 2k-gons provide examples of geometric
realizations of the 1-skeleton of Ok for every k, as in Fig. 3. (This fact was previously
noted by Chambers, de Silva, Erickson, and Ghrist in [9].) �

Proof of Theorem 3.2 The argument for the Čech complex proceeds along the same
lines, mutatis mutandis, but with one important difference. Again the dominating
contribution to βk will come from vertex-minimal k-dimensional spheres, but for a
Čech complex, the smallest possible vertex support that a simplicial complex with
nontrivial Hk can have is k + 2 vertices, coming from the boundary of a (k + 1)-
dimensional simplex.
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Let S̃k denote the number of connected components isomorphic to the boundary
of a (k + 1)-dimensional simplex. By the same argument as before, we have

E[S̃k] ≤ E[βk] ≤ E[S̃k] + E
[
f

≥k+3
k

]
.

Deciding whether some set of k + 2 vertices span the boundary of a (k + 1)-
dimensional simplex depends on higher intersections, so in particular, when k > 2,
the faces of the Čech complex are not determined by the underlying geometric
graph. It is proved in Sect. 3 of [20] that as long as r = o(n−1/d), then E[S̃k] =
Θ(nk+2r(k+1)d ). On the other hand, we have E[f ≥k+3

k ] = O(nk+3r(k+2)d ). As be-
fore, since r = o(n−1/d), this is enough to give that

lim
n→∞E[βk]/E[S̃k] = 1,

and then E[βk] = Θ(nk+2r(k+1)d ), as desired. �

3.2 Vanishing/Nonvanishing Threshold

To state the following theorems, we assume that d ≥ 2 and k ≥ 1 are fixed and that r

is still in the sparse regime, i.e., that r = o(n−1/d).

Theorem 3.9 (Threshold for nonvanishing of Hk in the random Vietoris–Rips com-
plex)

(1) If

r = o
(
n

− 2k+2
d(2k+1)

)
,

then a.a.s. Hk(R(n; r)) = 0, and
(2) if

r = ω
(
n

− 2k+2
d(2k+1)

)
,

then a.a.s. Hk(R(n; r)) �= 0.

Proof The first statement follows directly from Lemma 3.4 and Theorem 3.6; i.e.,
if r is too small, then the connected components are simply too small to support
nontrivial homology.

For the second statement, we have from Theorem 3.1 that given this hypothesis
on r , we have that E[βk] → ∞. This by itself is not enough to establish that βk �= 0
a.a.s. However it is established in Sect. 4 of [20] that Var[βk] is of the same or-
der of magnitude as E[βk], so this follows from Chebyshev’s inequality, as in [1],
Chap. 4. �

The corresponding result for Čech complexes is the following.

Theorem 3.10 (Threshold for nonvanishing of Hk in the random Čech complex)
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(1) If

r = o
(
n

− k+2
d(k+1)

)
,

then a.a.s. Hk(R(n; r)) = 0, and
(2) if

r = ω
(
n

− k+2
d(k+1)

)
,

then a.a.s. Hk(R(n; r)) �= 0.

Proof The proof is identical. The needed result for bounding the variance of Var[βk]
is established in Sect. 3 of [20]. �

4 Critical

The situation in the critical regime (or thermodynamic limit) is more delicate to an-
alyze. We are still able to compute the right order of magnitude for E[βk]: it grows
linearly for every k.

Theorem 4.1 For either of the random Vietoris–Rips and Čech complexes on a prob-
ability distribution on R

d with bounded measurable density function, if r = Θ(n−1/d)

and k ≥ 1 is fixed, then E[βk] = Θ(n).

Proof The proof is the same as in the previous section. For example, for the Vietoris–
Rips complex, we still have

E [̃ok] ≤ E[βk] ≤ E[õk] + E
[
f

≥2k+3
k

]
.

Penrose’s results for component counts extend in to the thermodynamic limit, so in
particular E [̃ok] = Θ(n) and E[f ≥2k+3

k ] = O(n). The desired result follows. �

The thermodynamic limit is of particular interest since this is the regime where
percolation occurs for the random geometric graph [26]. Bollobás [5] recently exhib-
ited an analogue of percolation on the k-cliques of the Erdős–Rényi random graph. It
would be interesting to know if analogues of his result occurs in the random geomet-
ric setting.

For example, define a graph with vertices for k-dimensional faces, with edges
between a pair whenever they are both contained in the same (k + 1)-dimensional
face. Does there exist a constant Ck > 0 such that whenever

lim
n→∞nrd > Ck,

there is a.a.s. a unique k-dimensional “giant component” (suitably defined), and
whenever

lim
n→∞nrd < Ck,

all the components are a.a.s. “small”?
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5 Supercritical

For this section and the next, we assume that the underlying distribution is uniform
on a smoothly bounded convex body. (Recall that a smoothly bounded convex body is
a compact, convex set, with nonempty interior.) This assumption is not only a matter
of convenience—it would seem that some assumption on density must be made to
make topological statements in the denser regimes.

For example, the geometric random graph becomes connected once r =
Ω((logn/n)1/d) for a uniform distribution on a convex body, but for a standard
multivariate normal distribution, r must be much larger, r = Ω((log logn/ logn)1/2),
before the geometric random graph becomes connected [26].

The supercritical regime is where r = ω(n−1/d). In this section we give an upper
bound on the expectation of the Betti numbers for the random Vietoris–Rips complex
in this regime. This upper bound is sublinear, so this shows that the Betti numbers are
growing the fastest in the thermodynamic limit.

The main tool is discrete Morse theory—see Appendix for the basic terminology
and the main theorem. A much more complete (and very readable) introduction to
discrete Morse theory can be found in [13].

Theorem 5.1 Let R(Xn; r) be a random Vietoris–Rips complex on n points taken
i.i.d. uniformly from a smoothly bounded convex body K in R

d . Suppose that r =
ω(n−1/d), and write W = nrd . Then

E[βk] = O
(
Wke−cWn

)

for some constant c > 0, and in particular E[βk] = o(n).

Here c depends on the convex body K but not on k. In fact it is apparent from the
proof that c depends only on the volume of K and not on its shape.

Recall that μ(S) denotes the Lebesgue measure of S ⊂ R
d , and ‖x‖ denotes the

Euclidean norm of x ∈ R
d . We require a geometric lemma in order to prove the main

theorem.

Lemma 5.2 (Main geometric lemma) There exists a constant εd > 0 such that the
following holds. Let l ≥ 1, and let {y0, . . . , yl} ⊂ R

d be an (l +1)-tuple of points such
that

‖y0‖ ≤ ‖y1‖ ≤ · · · ≤ ‖yl‖
and ‖y1‖ ≥ 1/2. If ‖y0 − y1‖ > 1 and ‖yi − yj‖ ≤ 1 for every other 0 ≤ i < j ≤ l,
then the intersection

I =
l⋂

i=1

B(yi,1) ∩ B
(
0,‖y1‖

)

satisfies μ(I) ≥ εd .

As the notation suggests, εd depends on d but holds simultaneously for all l.
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Proof of Lemma 5.2 Let ym = (y0 +y1)/2 denote the midpoint of line segment y0y1.
By the assumption that ‖y0 − y1‖ > 1, we have ‖ym − y0‖ = ‖ym − y1‖ > 1/2. We
now wish to check that ym is still not too far away from any yi with 2 ≤ i ≤ l.

Let θ be the positive angle between y0 − y2 and y1 − y2. Since ‖y0 − y2‖ ≤ 1,
‖y1 − y2‖ ≤ 1, and ‖y1 − y2‖ > 1, the law of cosines gives that

(y0 − y2) · (y1 − y2) = ‖y0 − y2‖‖y1 − y2‖ cos θ

= 1

2

(‖y0 − y2‖2 + ‖y1 − y2‖2 − ‖y0 − y2‖2)

<
1

2
.

Then

‖ym − y2‖2 = (ym − y2) · (ym − y2)

= (
(y0 + y1)/2 − y2

) · ((y0 + y1)/2 − y2
)

= (
(y0 − y2)/2 + (y1 − y2)/2

) · ((y0 − y2)/2 + (y1 − y2)/2
)

= (1/4)
(‖y0 − y2‖2 + ‖y1 − y2‖2 + 2(y0 − y2) · (y1 − y2)

)
< (1/4)

(
1 + 1 + 2(1/2)

)
= 3/4,

so

‖ym − y2‖ <
√

3/2.

The same argument works as written with y2 replaced by yi with 3 ≤ i ≤ l. Now set
ρ = 1 − √

3/2. By the triangle inequality, B(ym,ρ) ⊂ B(yi,1) for 1 ≤ i ≤ l. So we
have that

B(ym,ρ) ∩ B
(
0,‖y1‖

) ⊂
l⋂

i=1

B(yi,1) ∩ B
(
0,‖y1‖

)
.

By the triangle inequality we have that ‖ym‖ ≤ ‖y1‖, and it follows that

μ
(
B(ym,ρ) ∩ B

(
0,‖y1‖

)) ≥ μ
(
B(y1, ρ) ∩ B

(
0,‖y1‖

))
.

Since ‖y1‖ ≥ 1/2, the quantity μ(B(y1, ρ)∩B(0,‖y1‖)) is bounded away from zero,
and in fact it attains its minimum when ‖y1‖ = 1/2. Set εd equal to this minimum
value of μ(B(y1, ρ) ∩ B(0,‖y1‖)), and the statement of the lemma follows. �

Scaling everything in R
d by a linear factor of r , we rewrite the lemma in the form

in which we will use it.

Lemma 5.3 (Scaled geometric lemma) There exists a constant εd > 0 such that the
following holds for every r > 0. Let l ≥ 1, and let {y0, . . . , yk} ⊂ R

d be an (l + 1)-
tuple of points such that

‖y0‖ ≤ ‖y1‖ ≤ · · · ≤ ‖yl‖
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and (1/2)r ≤ ‖y1‖. If ‖y0 − y1‖ > r and ‖yi − yj‖ ≤ r for every other 0 ≤ i < j ≤ l,
then the intersection

I =
l⋂

i=1

B(yi, r) ∩ B
(
0,‖y1‖

)

satisfies μ(I) ≥ εdrd .

We are ready to prove the main result of the section.

Proof of Theorem 5.1 By translation and rescaling if necessary, assume without loss
of generality that B(0,1) ⊂ K . Since with probability 1 no two points are the same
distance to the origin, index the points Xn = {x1, . . . , xn} by distance to 0, i.e.,

‖x1‖ < ‖x2‖ < · · · < ‖xn‖.
Now we define a discrete vector field V on R(Xn; r) in the sense of discrete Morse
theory, as discussed in Appendix.

Whenever possible, pair face S = {xi1, xi2, . . . , xij } with face {xi0}∪S with i0 < i1
and i0 as small as possible. This can be done in any particular order or simultaneously,
and still each face gets paired at most once, as follows. A face S cannot get paired
with two different higher-dimensional faces {xa}∪S and {xb}∪S, since S will prefer
the vertex with smaller index min{a, b}. On the other hand, it is also not possible for
S to get paired with both a lower-dimensional face and a higher-dimensional face:
Suppose that S gets paired with {xa} ∪ S. Then ‖xa‖ < ‖s‖ for every s ∈ S, and no
codimension 1 face F ≺ S could also get paired with S, since F would prefer to get
paired with {xa} ∪ F .

Hence, each face is in at most one pair, and V is a well-defined discrete vector
field. Moreover, the indices are decreasing along any V -path, so there are no closed
V -paths. Therefore V is a discrete gradient vector field.

Let us bound the probability pk that a set of k + 1 vertices span a k-dimensional
face in the Vietoris–Rips complex. Given the first vertex v, the other vertices would
all have to fall in B(v, r), so pk = O(rdk). Recall that we defined W = nrd , and we
rewrite this bound as

pk = O
(
(W/n)k

)
.

Given that a set of k + 1 vertices {xi1, xi2, . . . , xik+1} span a k-dimensional face
F , how could F be critical (or unpaired) with respect to V ? It must be that there is
no common neighbor xa of these vertices with a < i1 or else F would be paired up
by adding the smallest index such point. On the other hand, F would be paired with
{xi2, . . . , xik+1}, unless xi2, . . . , xik+1 had a common neighbor with smaller index than
xi1 . So assuming that F is unpaired, call this common neighbor xi0 .

We have satisfied the hypothesis of Lemma 5.3 with l = k + 1 and ym = xim . (If
‖y1‖ < (1/2)r , then either ‖y0 − y1‖ < r or ‖yo‖ > ‖y1‖, a contradiction to our
assumptions.) So let

I =
k+1⋂
j=1

B(xik , r) ∩ B
(
0,‖xi1‖

)
,
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and we know from the lemma that μ(I) ≥ εdrd with εd > 0 constant.
If any vertices fall in region I , then F would be paired; indeed, if xa ∈ I , then xa

would be a common neighbor of all the vertices in F , with a < i1.
The probability that a uniform random point in K falls in region I is μ(I)/μ(K) ≥

εdrd/μ(K), where μ(K) is the volume of the ambient convex body. By independence
of the random points, we have that the probability pc that F is critical (given that it
is a face) is at most

pc ≤
(

1 − εd

μ(K)
rd

)n−k−2

.

Now
(

1 − εd

μ(K)
rd

)n−k−2

≤ exp

(
− εd

μ(K)
rd(n − k − 2)

)
= O

(
exp(−cW)

)
,

where c is any constant such that

0 < c <
εd

μ(K)
.

Let Ck denote the number of critical k-dimensional faces, and we have that

E[Ck] ≤
(

n

k + 1

)
pf pc ≤

(
n

k + 1

)(
W

n

)k

e−cW = O
(
Wke−cWn

)
.

Since βk ≤ Ck , in every case we have E[βk] ≤ E[Ck], and then

E[βk] = O
(
Wke−cWn

)
,

as desired. �

6 Connected

As in the previous section, we assume that the underlying distribution is uniform
on a smoothly bounded convex body K , but we now require r to be slightly larger,
r = Ω((logn/n)1/d). In this regime, the geometric random graph is known to be
connected [26], and we show here that the Čech complex is contractible, and the
Vietoris–Rips complex “approximately contractible” (in the sense of k-connected for
any fixed k).

Theorem 6.1 (Threshold for contractibility, random Čech complex) For a uniform
distribution on a smoothly bounded convex body K in R

d , there exists a constant c,
depending on K , such that if r ≥ c(logn/n)1/d , then the random Čech complex
C(Xn; r) is a.a.s. contractible.

This is best possible up to the constant in front, since there also exists a constant c′
such that if r ≤ c′(logn/n)1/d , then the random Čech complex is a.a.s. disconnected
[26].
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Definition 6.2 Let A = {A1,A2, . . . ,Ak} be a cover of a topological space T . Then
the nerve of the cover A is the (abstract) simplicial complex N (A) on vertex set
[k] = {1,2, . . . , k} with σ ⊂ [k] a face whenever

⋂
i∈σ Ai �= ∅.

The proof depends on the following result (Theorem 10.7 in [4]).

Theorem 6.3 (Nerve Theorem) If T is a triangulable topological space and if A =
(Ai)i∈[k] is a finite cover of T by closed sets such that every nonempty section Ai1 ∩
Ai2 ∩ · · · ∩ Ait is contractible, then T and the nerve N (T ) are homotopy equivalent.

Proof of Theorem 6.1 Once r is sufficiently large, the balls {B(xi, r/2)} cover the
smoothly bounded convex body K , and then Theorem 6.3 gives that it is contractible.
So to prove the claim, it suffices to show that there exists a constant c > 0 such that
whenever r ≥ c(logn/n)1/d , the balls of radius r/2 a.a.s. cover K . There is no harm
in assuming that r → 0 as n → ∞ since the statement is trivial otherwise.

Let Z
d denote the d-dimensional cubical lattice, and λZ

d the same lattice linearly
scaled in every direction by a factor λ > 0. With the end in mind, we set λ = r/(4

√
d).

(Note that since r = r(n), λ is also a function of n.) Since K is bounded, only a finite
number N of the boxes of side length λ intersect it. More precisely, it is easy to see
that

N = μ(K)/λd + O
(
1/λd−1).

As n → ∞ and λ → 0, almost all of these N boxes are contained in K , but some
are on the boundary. Denote by SK the set of boxes completely contained in K .
Suppose that every box in SK contains at least one point in Xn. Then the balls of
radius r/2 cover K , as follows.

First of all, each box has diameter λ
√

d = r/4. So a ball of radius r/2 with a point
in one of these boxes not only covers the box itself, but all the boxes adjacent to it.
Since every boundary box is adjacent to at least one box in SK , this is sufficient.

For a box B ∈ SK , let po denote the probability that box B ∩ Xn = ∅. By unifor-
mity of distribution this is the same for every B , and by independence of the points
we have that

po = (
1 − λd/μ(K)

)n ≤ exp
(−λdn/μ(K)

) = exp
(−(r/4

√
d)dn/μ(K)

)

= exp
(−Crdn

)
,

where

C = 1

4ddd/2μ(K)

is constant.
Setting r = ck(logn/n)1/d , we have that

po ≤ exp
(−Ccd

k logn
) = n−Ccd

k .

There are at most N boxes in SK , and

N = μ(K)/λd + O
(
1/λd−1) = (

1 + o(1)
)
/Crd,
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so applying a union bound, the probability pf that at least one box in SK fails to
contain any points from Xn is bounded by

pf ≤ Npo ≤ 1 + o(1)

Crd
n−Ccd

k = 1 + o(1)

Ccd
k logn

n1−Ccd
k .

So choosing ck > (1/C)1/d is sufficient to ensure that K is a.a.s. covered by the n

random balls of radius r/2, and the desired result follows. �

The situation for the Vietoris–Rips complex is a bit more subtle since the nerve
theorem is not available to us. Nevertheless, we use Morse theory to show in the con-
nected regime that the Vietoris–Rips complex becomes “approximately contractible,”
in the sense of highly connected.

Definition 6.4 A topological space T is k-connected if every map from an i-
dimensional sphere Si → T is homotopically trivial for 0 ≤ i ≤ k.

For example, 0-connected means path-connected, and 1-connected means path-
connected and simply-connected. The Hurewicz Theorem and universal coefficients
for homology give that if T is k-connected, then H̃i(T ) = 0 for i ≤ k, with coeffi-
cients in Z or any field [16].

Theorem 6.5 (k-connectivity of the random Vietoris–Rips complex) For a smoothly
bounded convex body K in R

d , endowed with a uniform distribution, and fixed k ≥ 0,
if r ≥ ck(logn/n)1/d , then the random Vietoris–Rips complex R(Xn; r) is a.a.s. k-
connected. (Here ck > 0 is a constant depending only on the volume μ(K) and k.)

Proof of Theorem 6.5 The proof is identical to the proof of Theorem 5.1, but now r

is bigger, and we obtain a stronger result. We place a discrete gradient vector field
on R(Xn; r) in the same way described before and repeat the same argument. If Ck

denotes the number of critical k-dimensional faces, c is the constant in the statement
of Theorem 5.1, and W = nrd , then we have

E[Ck] = O
(
Wke−cWn

) = O
((

nrd
)k

e−cnrd

n
) = O

((
cd
k logn

)k
n1−ccd

k
)
,

since nrd = cd
k logn. So we have that E[Ck] → 0, provided that ck > (1/c)1/d .

The same argument holds simultaneously for all smaller values of k ≥ 1 as well,
so a.a.s. the only critical cell of dimension ≤ k is the vertex closest to the origin. By
Theorem 7.2 in Appendix, R(Xn; r) is a.a.s. homotopy equivalent to a CW-complex
with one 0-cell and no other cells of dimension ≤ k. This implies that R(Xn; r) is
k-connected by cellular approximation [16]. �

At the moment we do not know if there is a sufficiently large constant t > 0
such that whenever r ≥ t (logn/n)1/d , the random Vietoris–Rips complex R(Xn; r)
is a.a.s. contractible. In fact it is not even clear that making r = ω((logn/n)1/d) is
sufficient for this; this ensures that R(Xn; r) is a.a.s. k-connected for every fixed k,
but our results here do not rule out the possibility that there is nontrivial homology in
dimension k where k → ∞ as n → ∞.
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6.1 Nonvanishing to Vanishing Threshold

Given a lemma about geometric random graphs which we state without proof, we
have a second threshold where kth homology passes back from nonvanishing.

First, the statement of the lemma. (We are still assuming that the underlying dis-
tribution is uniform on a smoothly bounded convex body.)

Lemma 6.6 Suppose that H is a feasible subgraph, that r = Ω(n−1/d), and that
r = o((logn/n)1/d). Then the geometric random graph X(n; r) a.a.s. has at least
one connected component isomorphic to H .

This lemma should follow from the techniques in Chap. 3 of [26]. Given the
lemma, we have the following intervals of vanishing and nonvanishing homology
for R(n; r).

Theorem 6.7 (Intervals of vanishing and nonvanishing, random Vietoris–Rips com-
plex) Fix k ≥ 1. For a random Vietoris–Rips complex on a uniform distribution on a
smoothly bounded convex body in R

d ,

(1) if

r = o
(
n

− 2k+2
d(2k+1)

)
or r = ω

(
(logn/n)1/d

)
,

then a.a.s. Hk = 0, and
(2) if

r = ω
(
n

− 2k+2
d(2k+1)

)
and r = o

(
(logn/n)1/d

)
,

then a.a.s. Hk �= 0.

Similarly, for C(n, r) , we have the following.

Theorem 6.8 (Intervals of vanishing and nonvanishing, random Čech complex) Fix
k ≥ 1. For a random Čech complex on a uniform distribution on a smoothly bounded
convex body,

(1) if

r = o
(
n

− k+2
d(k+1)

)
or r = ω

(
(logn/n)1/d

)
,

then a.a.s. Hk = 0, and
(2) if

r = ω
(
n

− k+2
d(k+1)

)
and r = o

(
(logn/n)1/d

)
,

then a.a.s. Hk �= 0.

Proof In both cases, (1) follows from the results we have established in the sparse
regime. The point of Lemma 6.6 is that as long as r falls in this intermediate regime,
there is a.a.s. at least one connected component homeomorphic to the sphere Sk ,
hence contributing to homology Hk . �
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7 Further Directions

From the point of view of applications to topological data analysis, the thing that is
most needed is results for statistical persistent homology [8]. Bubenik and Kim [7]
computed persistent homology for i.i.d. uniform random points in the interval apply-
ing the theory of order statistics, but so far these are some of the only detailed results
for persistent homology of randomly sampled points. (More recently, Bubenik, Carls-
son, Kim, and Luo [6] discussed recovering persistent homology of a manifold with
respect to some fixed function by data smoothing with kernels, and then applying
stability for persistent homology.)

The theorems in this article have implications for statistical persistent homology.
In particular, we have bounded the number of nontrivial homology classes, and since
almost all of the homology comes from vertex minimal spheres, almost all classes
should not persist for long. It might be possible to rule out homology classes that
persist for a long interval altogether. Such a theorem would be an important step
toward quantifying the statistical significance of long bars in persistent homology.

Although we have bounded Betti numbers here, coefficients themselves have not
played any role. It seems that more refined tools are needed to detect torsion in Z-
homology of random complexes. (This comes up for other kinds of random simplicial
complexes as well; see, for example, [2].)

The topological properties studied here are not monotone, but the results suggest
strongly that they are roughly unimodal. Can this be made more precise? For exam-
ple, can one show that for sufficiently large n, E[βk] is actually a unimodal function
of r? Similar statistically unimodal behavior in random homology was previously
observed for other kinds of random simplicial complexes in [18] and [19].
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Appendix: Discrete Morse Theory

In this appendix we define a few terms relevant to discrete Morse theory and state the
main theorem. For a more complete introduction to the subject, we refer the reader to
[13].

For two faces σ, τ of a simplicial complex, we write σ ≺ τ if σ is a face of τ of
codimension 1.

Definition 7.1 A discrete vector field V of a simplicial complex � is a collection of
pairs of faces of � {α ≺ β} such that each face is in at most one pair.
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Given a discrete vector field V , a closed V -path is a sequence of faces

α0 ≺ β0 � α1 ≺ β1 � · · · ≺ βn � αn+1

with αi+1 �= αi such that {αi ≺ βi} ∈ V for i = 0, . . . , n and αn+1 = αo. (Note that
{βi � αi+1} /∈ V since each face is in at most one pair.) We say that V is a discrete
gradient vector field if there are no closed V -paths.

Call any simplex not in any pair in V critical. Then the main theorem is the fol-
lowing [13].

Theorem 7.2 (Fundamental theorem of discrete Morse theory) Suppose that � is a
simplicial complex with a discrete gradient vector field V . Then � is homotopy equiv-
alent to a CW complex with one cell of dimension k for each critical k-dimensional
simplex.

Simply counting cells is an extremely coarse measure of a topology complex, but it
can be enough to completely determine homotopy type; for example, a CW complex
with one 0-cell and all the rest of its cells d-dimensional is a wedge of d-spheres.

In all cases, if fk is the number of cells of dimension k, then the definition of
cellular homology gives that βk ≤ fk , and this is the main fact that we exploit in
Sects. 5 and 6 to bound the expected dimension of homology.
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