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Abstract. We construct arbitrarily sparse locally-jammed packings of non-
overlapping congruent disks in various finite area regions — in particular, we
give constructions for the square, hexagon, and for certain flat tori.

1. Introduction

The densest disk packing in the plane was proved to be the hexagonal packing
by Axel Thue in 1910 [17], pp. 257–263, although some consider Thue’s proof
flawed, see Conway & Sloane [7]. Densest disk packing in various bounded regions,
triangles, squares, circles, for example is also well studied, and much less is known;
see for example the writings of Graham et al [11, 2, 12, 13] and Melissen [15, 14].
See also Brass, Moser, and Pach’s book [4] on open problems in discrete geometry.

We use “locally-jammed” to describe a configuration of non-overlapping disks
where each disk is held in place by its neighbors (and in the case of a bounded
region, by the boundary). In other words, all the angles in the contact graph are
strictly less than π. This terminology is used in the physics literature on hard
particle packing [18], and these configurations have more often been called “stable”
in the discrete geometry literature [16]. The main question we are interested in is:
what are the sparsest such configurations?

In 1964 K. Böröczky disproved a conjecture of Fejes Tóth that a locally-jammed
arrangement of disks in the plane must have positive density [3]. This counterex-
ample is a main inspiration for the examples given in this article, and our main
point is to extend Böröczky’s construction to from the unbounded case of the plane
to certain finite area regions.

Whereas Böröczky’s configuration is zero-density, the best we could hope for in a
bounded region is a sequence of locally-jammed configurations with the number of
disks n → ∞ and with density approaching zero. If we could attain such sequences,
then the interesting question would be how fast can the density approach zero as
n → ∞. The examples we construct have r ≤ C/n for some constant C depending
on the region, which is best possible, up to the constant C.

For certain regions locally-jammed configurations of density O(1/n) are easy to
find. Figure 1 shows a locally-jammed configuration in a circle. It is clear that we
can find such configurations for arbitrary n and r = O(1/n). The same argument
holds in any smoothly bounded 2-dimensional smoothly bounded compact body.

To find such constructions in polygonal regions, seems more difficult, and is
the main result of our paper. One consequence is that the Metropolis algorithm for
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Figure 1. A locally-jammed disk packing in a circle.

hard disks, a well-studied Markov chain for sampling from the configuration space of
hard disks, is not necessarily ergodic in the thermodynamic limit for such domains,
even for relatively small radius disks. Diaconis, Lebeau, and Michel recently put
upper bounds on the mixing time of the Metropolis algorithm for such domains
given an assumption that r = O(1/n), and for the regions studied here we see that
this assumption is necessary [8, 9].

2. Sparse locally-jammed configurations

A positioning of n non-overlapping disks of radius r in the unit square [0, 1]2 is
a configuration.

We first describe a construction of a one-way infinite “bridge” in the plane due
to Böröczky [3]. We follow closely Pach and Sharir’s description in [16]. For con-
venience of notation, all of the disks for now are unit radius; they can be rescaled
as necessary later to fit in a box. First, the construction is symmetric about the
x-axis, so we only describe disks with their centers on or above the axis. Let
a1 = (0, 2 +

√
3), b1 = (0,

√
3), c1 = (1, 0), as in Figure 2. Let f(x) be strictly con-

vex function defined for x ≥ 0, with f(0) = 2 +
√
3 and limx→∞ f(x) = 2

√
3. Let

C be the curve C = {(x, f(x)) | x ≥ 0}, and let a1, a2, a3, . . ., the unique sequence
of distinct points on C such that d(ai, ai+1) = 2 for i = 1, 2, . . ..

Now set b2 to be the unique point to the right of a2 such that d(b2, a2) = 2,
and d(b2, c1) = 1. Then set c2 to be the point on the x-axis to the right of b2 with
d(c2, b2) = 1. Inductively define bi+1 to be the point to the right of ai such that
d(bi+1, ai+1) = 2 and d(bi+1, ci) = 2. Similarly, set ci+1 to be the point on the
x-axis to the right of bi+1 such that d(ci+1, bi+1) = 2.

The beginning of this construction is illustrated in the left side of Figure 4. The
details that the construction results in a well-defined, locally-jammed configuration
(except along the four disks on the left) can be found in Böröczky’s original paper
[3]. He needed a second idea to get a locally-jammed configuration and disprove
Fejes Toth’s conjecture. He constructed a junction where three of these bridges
could meet and hold all the loose disks on the end in place. Böröczky’s junction is
shown in Figure 3.

We first use a slight modification of Böröczky’s bridge construction, due to Pach
and Sharir [16]. For ǫ > 0, replace f(x) above by the strictly convex function

fǫ(x) := (1 + ǫ)f(x)− ǫf(0).
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Figure 2. Böröczky’s bridge. (After Figure 9.2, p. 282, in [16].)

Figure 3. Böröczky’s junction. The dark shaded disks are locally-
jammed, and three copies of the bridge will overlap along the lightly
shaded disks. This gives a zero-density locally-jammed configura-
tion in the plane.

We have fǫ(0) = f(0) = 2 +
√
3, and limx→∞ fǫ(x) < 2

√
3, so the sequence no

longer continues indefinitely. By the intermediate value theorem, by varying ǫ we
can insure that for any arbitrarily large N , some bN is the last well-defined point,
and its x-coordinate is one more than the x-coordinate of aN .

Then let l be the vertical line through bN , as in Figure 4, and complete the
configuration using l as a line of symmetry, as illustrated. This gives an arbitrarily
long symmetric bridge.

The second piece of our construction for the square is the corner “junction” piece
in Figure 5. The construction is easily verified to exist. If the center of the bottom
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Figure 4. Pach and Sharir’s bridge.

Figure 5. The square corner junction.

left disk has coordinates (0, 0), then the remaining five disks in the bottom left
quarter of the square have coordinates:

(0, 2), (2, 0), (2 +
√
3, 1), (1, 2 +

√
3), and (1 +

√
3, 1 +

√
3).

Taking four copies each of the junction and bridge, and arranging them so that
they overlap along the lightly-shaded outermost disks as in in Figure 6, the resulting
configuration is locally-jammed.
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Figure 6. By making the bridges arbitrarily long, there are
locally-jammed configurations in the square with r = O(1/n).

Figure 7. Corner junctions for a regular hexagon

By making the bridges arbitrarily long, we have locally-jammed configurations
in an square an infinite sequence {ni} disks and ri = O(1/ni) as i → ∞. By
identifying the edges of the square, we get configurations in a flat square torus.

For similar construction, in Figure 7 we exhibit a corner junction for regular
hexagons. It seems likely to us that there are locally-jammed disk packings in any
convex polygonal region, and perhaps in any convex region with a piecewise-smooth
boundary.

3. Discussion

The configurations discussed in this article are locally-jammed, meaning that no
single disk can move, but it is still possible for several disks to move simultaneously,
as follows. Connelly noted the following in the context of finding maximally dense
disk packings [6].

Lemma 3.1. Connelly’s criterion Suppose D1, D2, . . . , Dk is a collection of hard

disks in a convex region with flat boundaries, with disk Di centered at xi. Suppose

further that v1, . . . , vk are vectors such that

(xi − xj) · (vi − vj) ≥ 0
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Figure 8. Locally-jammed configurations in a hexagon

Figure 9. Locally-jammed configuration on a hexagonal flat torus

for every tangent pair of disks {Di, Dj}. Then the disks can simultaneously move,

with Di moving in the direction of vi, for some finite time.

There are 234 disks in Figure 6, and a total of 427 contacts. Since each disk has
a priori two degrees of freedom, Connelly’s criterion leads to a system of 427 linear
inequalities in 468 unknowns. Hence there are nontrivial solutions to this system,
corresponding to motions of the disks if they are allowed to collectively move. This
distinction is made in the physics literature — this disk packing might be said to
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be locally-jammed but not collectively-jammed [18]. (This distinction is also made
in the mathematical literature — a packing C of convex bodies is called k-stable
if every k-element subset of C is fixed by the rest; see Chapter 2, section 3, of the
book [4].)

These considerations are closely related to the question of whether the configu-

ration space of n disks of radius r is connected [1]. This question is fundamental,
e.g. from the point of view of ergodic theory. For a discussion of the topology of
configuration spaces of hard disks in the context of statistical mechanics, see [5].

The following questions seem open for 2-dimensional bounded regions or compact
Riemannian 2-manifolds without boundary.

(1) How small must r = r(n) to ensure that the configuration space of n disks
of radius r is connected? From the example of the circle, sometimes it is
necessary to make r fairly small, r < C/n for some constant C. One might
guess that for many regions, it is sufficient to make r < C/

√
n but we are

not aware of a single example where someone has proved this.

(2) Similarly, how small can r = r(n) be in a collectively-jammed configuration?
It has been conjectured that for flat torus, the sparsest strictly-jammed
configuration is the (reinforced) Kagome lattice [10].
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