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Stochastic topology
1. M. Kahle. The neighborhood complex of a random graph. J. Combin. Theory

Ser. A 114 (2007), no. 2, 380–387.

For a graph G, the neighborhood complex N[G] is the simplicial complex on
the vertices of G having all subsets of vertices sharing a common neighbor as
its faces. It is a well known result of Lovász that if N[G] is k-connected, then
the chromatic number of G is at least k + 3. We prove that the connectivity
of the neighborhood complex of a random graph is tightly concentrated, with
high probability between 1/2 and 2/3 of the expected clique number. We also
show that the number of dimensions of nontrivial homology is with high prob-
ability small, O(logd), compared to the expected dimension d of the complex
itself. One motivation for this work was to understand how well topological
lower bounds on chromatic number perform for “typical” graphs.

2. M. Kahle. Topology of random clique complexes. Discrete Math., 309 (2009),
no. 6, 1658–1671.

Erdős and Rényi showed that if p� logn/n then the random graph G(n, p) is
connected with high probability, and if p� logn/n then G(n, p) is disconnected
with high probability, as n→ ∞. The clique complex X(H) of a graph H is the
simplicial complex with all complete subgraphs of H as its faces. We study the
clique complex of G(n, p), denoted X(n, p). For k≥ 1, we show that if p� n−1/k

or p� n1/(2k+1), then the kth homology Hk (X(n, p)) = 0 with high probabil-
ity, and if n−1/(k+1)� p� n−1/k, then with high probability Hk (X(n, p)) 6= 0.
We also give estimates for the expected rank of homology and exhibit explicit
nontrivial classes in the regime where homology is nontrivial. These estimates
suggest the “bouquet-of-spheres conjecture”, that random clique complexes are
homotopy equivalent to wedge sums of spheres with high probability.

3. E. Babson, C. Hoffman, and M. Kahle. The fundamental group of random 2-
complexes. J. Amer. Math. Soc. 24 (2011), no. 1, 1–28.

We study Linial–Meshulam random 2-complexes, which are two-dimensional
analogues of Erdős-Rényi random graphs. We find the threshold for simple con-
nectivity to be roughly p = n−1/2. This is much larger than the vanish thresh-
old for vanishing for homological connectivity, which was shown by Linial and
Meshulam to be p = 2logn/n. We use a variant of Gromov’s local-to-global
theorem for linear isoperimetric inequalities to show that when p = O(n−1/2−ε),
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Figure 1: The Betti numbers of a random clique complex on n = 25 vertices are shown
with the continuous curves. The blue stars represent the absolute value of the expected
Euler characteristic. The fact that the curves align so well is closely related to the fact
that homology tends to concentrate in one degree.

with high probability the fundamental group is word hyperbolic. Along the way
we classify the homotopy types of sparse 2-dimensional simplicial complexes
and establish isoperimetric inequalities for such complexes. These intermediate
results do not involve randomness and may be of independent interest.

4. M. Kahle. Random geometric complexes. Discrete Comput. Geom., 45 (2011),
no. 3, 553–573.

We study the expected topological properties of Čech and Vietoris–Rips com-
plexes built on i.i.d. random points in Rd . We find higher dimensional analogues
of known results for connectivity and component counts for random geometric
graphs. However, homology Hk is not monotone when k ≥ 1. In particular,
for every k ≥ 1 we show the existence of two thresholds, one where homology
passes from vanishing to nonvanishing, and another where it passes back to van-
ishing. We give asymptotic formulas for the expectation of the Betti numbers in
the sparser regimes, and bounds in the denser regimes. The main technical con-
tribution of the article is in the application of discrete Morse theory in geometric
probability.

5. D. Dotterrer and M. Kahle. Coboundary expanders. J. Topol. Anal. 4 (2012), no.
4, 499–514.

We describe a natural topological generalization of edge expansion for graphs to
regular CW complexes and prove that this property holds with high probability
for certain random complexes.

2



6. M. Kahle and E. Meckes. Limit theorems for Betti numbers of random simplicial
complexes. Homology, Homotopy Appl. 15(2) (2013), 343–374.

In this article we establish Poisson and normal approximation theorems for Betti
numbers of a different models of random simplicial complex: Erdős-Rényi ran-
dom clique complexes, random Vietoris–Rips complexes, and random Čech com-
plexes. These results may be of practical interest in topological data analysis.

There was a mistake in in our main proof. The proof is corrected in the erratum.

M. Kahle and E. Meckes. Erratum to “Limit theorems for Betti numbers of
random simplicial complexes”. Homology Homotopy Appl. 18 (2016), no. 1,
129–142.

7. M. Kahle. Sharp vanishing thresholds for cohomology of random flag com-
plexes. Ann. of Math. 179 (2014), 1085–1107.

For every k ≥ 1, the kth cohomology group Hk(X ,Q) of the random flag com-
plex X ∼ X(n, p) passes through two phase transitions: one where it appears,
and one where it vanishes. We describe the vanishing threshold and show that
the threshold is sharp. This is a high-dimensional analogue of the Erdős–Rényi
theorem characterizing the threshold for connectivity of the random graph.

In particular, we show that if
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The case k = 0 corresponds to the Erdős–Rényi random graph.

Combining with earlier results, we obtain as a corollary that for every k≥ 3, there
is a regime in which the random flag complex is rationally homotopy equivalent
to a bouquet of k-dimensional spheres.

8. M. Davis and M. Kahle. Random graph products of finite groups are rational
duality groups. J. Topol., 7 (2014), 589–606.

Given an edge-independent random graph G(n, p), we determine various facts
about the cohomology of graph products of groups for the graph G(n, p). In
particular, the random graph product of a sequence of finite groups is a rational
duality group with probability tending to 1 as n goes to infinity. This includes
random right-angled Coxeter groups as a special case.
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9. M. Kahle and B. Pittel. Inside the critical window for cohomology of random
k-complexes. Random Structures & Algorithms 48 (2016), no. 1, 102–124.

We prove sharper versions of theorems of Linial–Meshulam and Meshulam–
Wallach which describe the behavior for (Z/2)-cohomology of a random k-
dimensional simplicial complex within a narrow transition window. In partic-
ular, we show that within this window the (k− 1)st Betti number is in the limit
Poisson distributed. For k = 2 we also prove that in an accompanying growth
process, with high probability, first cohomology vanishes exactly at the moment
when the last isolated (k−1)-simplex gets covered by a k-simplex.

10. C. Hoffman, M. Kahle, and E. Paquette. The threshold for integer homology in
random d-complexes. Discrete Comput. Geom. 57 (2017), no. 4, 810–823.

Let Y ∼ Yd(n, p) denote the Bernoulli random d-dimensional simplicial com-
plex. We answer a question of Linial and Meshulam from 2003, showing that the
threshold for vanishing of homology Hd−1(Y,Z) is less than 40d(d +1) logn/n.
This bound is tight, up to a constant factor which depends on d.

11. O. Bobrowski, M. Kahle, and P. Skraba. Maximally persistent cycles in random
geometric complexes. Ann. Appl. Probab. 27 (2017), no. 4, 2032–2060.

We study maximally persistent cycles of degree k in persistent homology, for a
either the Čech or the Vietoris–Rips filtration built on a uniform Poisson process
of intensity n in the unit cube [0,1]d . This is a natural way of measuring the
largest “k-dimensional hole” in a random point set in Rd , where d = 2 is fixed
and n→ ∞. This problem is in the intersection of geometric probability and
algebraic topology, and is naturally motivated by a probabilistic view of topo-
logical inference. We show that for fixed d ≥ 2 and 1≤ k≤ d−1, the maximally
persistent cycle has (multiplicative) persistence of order

Θ

((
logn

log logn

)1/k
)

with high probability, characterizing its rate of growth as n→ ∞. The implied
constants depend on k, d, and on whether we consider the Vietoris–Rips or Čech
filtration.

12. D. Dotterrer, L. Guth, M. Kahle. 2-Complexes with Large 2-Girth. Discrete
Comput. Geom. 59 (2018), no. 2, 383–412.

The 2-girth of a 2-dimensional simplicial complex X is the minimum size of a
non-zero 2-cycle in H2(X ,Z/2). We consider the maximum possible girth of a
complex with n vertices and m 2-faces. If m = n2+α for α < 1/2, then we show
that the 2-girth is at most 4n2−2α and we prove the existence of complexes with
2-girth at least cα,ε n2−2α−ε . On the other hand, if α > 1/2, the 2-girth is at most
Cα . So there is a phase transition as α passes 1/2. Our results depend on a new
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upper bound for the number of combinatorial types of triangulated surfaces with
v vertices and f faces.

13. M. Kahle, F. Lutz, A. Newman, K. Parsons. Cohen–Lenstra heuristics for homol-
ogy of random complexes. Experimental Mathematics, 29:3, 347–359, (2020).

We study torsion in homology of the random d-complex Y ∼ Yd(n, p) experi-
mentally. Our experiments suggest that there is almost always a moment in the
process where there is an enormous burst of torsion in homology Hd−1(Y ). This
moment seems to coincide with the phase transition studied by Linial and Peled,
where cycles in Hd(Y ) first appear with high probability.

Our main study is the limiting distribution on the q-part of the torsion sub-
group of Hd−1(Y ) for small primes q. We find strong evidence for a limiting
Cohen–Lenstra distribution, where the probability that the q-part is isomorphic
to a given q-group H is inversely proportional to the order of the automorphism
group |Aut(H)|. We also study the torsion in homology of the uniform random
Q-acyclic 2-complex. This model is analogous to a uniform spanning tree on a
complete graph, but more complicated topologically since Kalai showed that the
expected order of the torsion group is exponentially large in n2. We give experi-
mental evidence that in this model also, the torsion is Cohen–Lenstra distributed
in the limit.

14. M. Kahle and A. Newman. Topology and geometry of random 2-dimensional
hypertrees. Discrete Comput. Geom. 67 (2022), no. 4, 1229–1244.

A hypertree, or Q-acyclic complex, is a higher-dimensional analogue of a tree.
We study random 2-dimensional hypertrees according to the determinantal mea-
sure suggested by Lyons, where each hypertree T is weighted by |H1(T )|2. We
are especially interested in their topological and geometric properties. We show
that with high probability, a random 2-dimensional hypertree T is apsherical, i.e.
that it has a contractible universal cover. We also show that with high probability
the fundamental group π1(T ) is hyperbolic and has cohomological dimension 2.

15. M. Kahle, E. Paquette, and É. Roldán. Topology of random 2-dimensional cubi-
cal complexes. Forum Math. Sigma 9 (2021), Paper No. e76, 24 pp.

We study a natural model of random 2-dimensional cubical complex which is a
subcomplex of an n-dimensional cube, and where every possible square 2-face
is included independently with probability p. Our main result exhibits a sharp
threshold p = 1/2 for homology vanishing as n→ ∞. This is a 2-dimensional
analogue of the Burtin and Erdős–Spencer theorems characterizing the connec-
tivity threshold for random graphs on the 1-skeleton of the n-dimensional cube.

Our main result can also be seen as a cubical counterpart to the Linial–Meshulam
theorem for random 2-dimensional simplicial complexes. However, the models
exhibit strikingly different behaviors. We show that if p > 1−

√
1/2≈ 0.2929,
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then with high probability the fundamental group is a free group with one gen-
erator for every maximal 1-dimensional face. As a corollary, homology vanish-
ing and simple connectivity have the same threshold, even in the strong “hitting
time” sense. This is in contrast with the simplicial case, where the thresholds are
far apart.

The main proof depends on an iterative algorithm for contracting cycles — we
show that with high probability the algorithm rapidly and dramatically simplifies
the fundamental group, converging after only a few steps.

16. P. Duncan, M. Kahle, and B. Schweinhart. Homological percolation on a torus:
plaquettes and permutohedra. submitted. (arXiv:2011.11903).

We study higher-dimensional homological analogues of bond percolation on a
square lattice and site percolation on a triangular lattice.

By taking a quotient of certain infinite cell complexes by growing sublattices,
we obtain finite cell complexes with a high degree of symmetry and with the
topology of the torus Td . When random subcomplexes induce nontrivial i-
dimensional cycles in the homology of the ambient torus, we call such cycles
giant. We show that for every i and d there is a sharp transition from nonexis-
tence of giant cycles to giant cycles spanning the homology of the torus.

We also prove convergence of the threshold function to a constant in certain
cases. In particular, we prove that pc = 1/2 in the case of middle dimension
i = d/2 for both models. This gives finite-volume high-dimensional analogues
of Kesten’s theorems that pc = 1/2 for bond percolation on a square lattice and
site percolation on a triangular lattice.

17. A. Ababneh and M. Kahle. Maximal persistence in random clique complexes.

We study the persistent homology of an Erdős–Rényi random clique complex
filtration on n vertices. Here, each edge e appears at a time pe ∈ [0,1] chosen
uniform randomly in the interval, and the persistence of a cycle σ is defined as
p2/p1, where p1 and p2 are the birth and death times of the cycle respectively.
We show that for fixed k ≥ 1, with high probability the maximal persistence
of a k-cycle is of order roughly n1/k(k+1). These results are in sharp contrast
with the random geometric setting where earlier work by Bobrowski, Kahle, and
Skraba shows that for random Čech and Vietoris–Rips filtrations, the maximal
persistence of a k-cycle is much smaller, of order (logn/ log logn)1/k.

Topological statistical mechanics
1. M. Kahle. Sparse locally-jammed disk packings. Ann. Comb. 16(4) (2012), 773–

780.

We construct arbitrarily sparse locally-jammed packings of non-overlapping con-
gruent disks in various finite area regions—in particular, we give constructions
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for the square, hexagon, and for certain flat tori.

2. G. Carlsson, J. Gorham, M. Kahle, and J. Mason. Computational topology for
configuration spaces of hard disks. Phys. Rev. E, 85 (2012).

We explore the topology of configuration spaces of hard disks experimentally,
and show that several changes in the topology can already be observed with
a small number of particles. The results illustrate a theorem of Baryshnikov,
Bubenik, and Kahle that critical points correspond to configurations of disks
with balanced mechanical stresses, and suggest conjectures about the asymp-
totic topology as the number of disks tends to infinity.

3. Y. Baryshnikov, P. Bubenik, and M. Kahle. Min-type Morse theory for configu-
ration spaces of hard spheres. Int. Math. Res. Notices 9 (2014), 2577–2592.

We study configuration spaces of hard spheres in a bounded region. We develop
a general Morse-theoretic framework, and show that mechanically balanced con-
figurations play the role of critical points. As an application, we find the precise
threshold radius for a configuration space to be homotopy equivalent to the con-
figuration space of points.

4. H. Alpert, M. Kahle, and R. MacPherson (with appendix by Ulrich Bauer and
Kyle Parsons). Configuration spaces of disks in an infinite strip. Journal of
Applied & Computational Topology 5 (2021), 357–390.

We study the topology of the configuration spaces C(n,w) of n hard disks of
unit diameter in an infinite strip of width w. We describe ranges of parameter or
“regimes”, where homology H j[C(n,w)] behaves in qualitatively different ways.

We show that if w ≥ j+ 2, then the homology H j[C(n,w)] is isomorphic to the
homology of the configuration space of points in the plane, H j[C(n,R2)]. The
Betti numbers of C(n,R2) were computed by Arnol’d, and so as a corollary of
the isomorphism, β j[C(n,w)] is a polynomial in n of degree 2 j.

On the other hand, we show that if 2≤ w≤ j+1, then β j[C(n,w)] grows expo-
nentially with n. Most of our work is in carefully estimating β j[C(n,w)] in this
regime.

We also illustrate, for every n, the homological “phase portrait” in the (w, j)-
plane— the parameter values where homology H j[C(n,w)] is trivial, nontrivial,
and isomorphic with H j[C(n,R2)]. Motivated by the notion of phase transitions
for hard-spheres systems, we discuss these as the “homological solid, liquid, and
gas” regimes. See Figure 2.

5. H. Alpert, U. Bauer, M. Kahle, R. MacPherson, and K. Spendlove. Homology
of configuration spaces of hard squares in a rectangle. to appear in Algebraic &
Geometric Topology. (arXiv:2010.14480).
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Figure 2: We describe the phase portrait of the homological solid, liquid, and gas
regimes for every n. We illustrate here the case n = 24.

We study ordered configuration spaces C(n; p,q) of n hard squares in a p× q
rectangle, a generalization of the well-known “15 Puzzle”. Our main interest is
in the topology of these spaces. Our first result is to describe a cubical cell com-
plex and prove that is homotopy equivalent to the configuration space. We then
focus on determining for which n, j, p, and q the homology group H j[C(n; p,q)]
is nontrivial. We prove three homology-vanishing theorems, based on discrete
Morse theory on the cell complex. Then we describe several explicit families
of nontrivial cycles, and a method for interpolating between parameters to fill in
most of the picture for “large-scale” nontrivial homology.

6. H. Alpert, M. Kahle, R. MacPherson. Asymptotic Betti numbers for hard squares
in the homological liquid regime. submitted. (arXiv:2207.13139).

We study configuration spaces C(n; p,q) of n ordered unit squares in a p by q
rectangle. Our goal is to estimate the Betti numbers for large n, j, p, and q. We
consider sequences of area-normalized coordinates, where

(
n
pq ,

j
pq

)
converges

as n, j, p, and q approach infinity. For every sequence that converges to a point
in the “feasible region” in the (x,y)-plane, we show that the factorial growth rate
of the Betti numbers is the same as the factorial growth rate of n!. This implies
that (1) the Betti numbers are vastly larger than for the configuration space of n
ordered points in the plane, which have the factorial growth rate of j!, and (2)
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y = xy = 1− x

y = 1/3
y = 1/4

y = x− (8/9)x2

x = n/pq

y
=

j/
pq

Figure 3: We proved that if H j[C(n; p,q)] 6= 0 and (x,y) = (n/pq, j/pq), then (x,y) is
in the shaded region 0 ≤ y ≤ min{x,1− x,1/3}. The blue region is what we call the
feasible region R. In another paper, we show that for every point in the interior of the
region, Betti numbers grow factorially fast.

every point in the feasible region is eventually in the homological liquid regime.

Random graphs
1. C. Hoffman, M. Kahle, and E. Paquette. Spectral gaps of random graphs and

applications. Int. Math. Res. Notices (2021), 8353–8404.

We study the spectral gap of the Erdős–Rényi random graph through the con-
nectivity threshold. In particular, we show that for any fixed δ > 0, if p ≥
(1/2+δ ) logn/n, then the normalized graph Laplacian of G(n, p) has its nonzero
eigenvalues tightly concentrated around 1. This is a strong expander property.
We estimate both the decay rate of the spectral gap to 1 and the failure proba-
bility, up to a constant factor. We also show that the 1/2 in the above is optimal,
and that if pc logn and c < 1/2, then there are eigenvalues of the Laplacian re-
stricted to the giant component that are separated from 1. We then describe
several applications of our spectral gap results to stochastic topology and geo-
metric group theory. These all depend on Garland’s method, a kind of spectral
geometry for simplicial complexes. The following can all be considered to be
higher-dimensional expander properties.

− First, we exhibit a sharp threshold for the fundamental group of the Bernoulli
random 2-complex to have Kazhdan’s property (T). We also obtain slightly
more information and can describe the large-scale structure of the group
just before the (T) threshold. In this regime, the random fundamental group
is with high probability the free product of a (T) group with a free group,
where the free group has one generator for every isolated edge. The (T)
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group plays a role analogous to that of a “giant component” in percolation
theory.

− Next we give a new, short, self-contained proof of the Linial–Meshulam–
Wallach theorem, identifying the cohomology-vanishing threshold of ran-
dom d-dimensional simplicial complexes. Since we use spectral techniques,
it only holds for Q coefficients. However, it is sharp from a probabilistic
point of view, providing hitting-time type results and limiting Poisson dis-
tributions inside the critical window. It is also a new method of proof,
circumventing the combinatorial complications of cocycle counting.

− The spectral gap results from this article were also applied to obtain sharp
cohomology-vanishing thresholds in every dimension for the random clique
complex.

2. M. Kahle and F. Martinez-Figueroa. The chromatic number of random Borsuk
graphs. Random Structures & Algorithms (2020), Vol 56. Issue 3. 838–850.

We study a model of random graph where vertices are n i.i.d. uniform random
points on the unit sphere Sd in Rd+1, and a pair of vertices is connected if the
Euclidean distance between them is at least 2− ε . We are interested in the chro-
matic number of this graph as n tends to infinity.

It is not too hard to see that if ε > 0 is small and fixed, then the chromatic num-
ber is d +2 with high probability. We show that this holds even if ε → 0 slowly
enough. We quantify the rate at which ε can tend to zero and still have the
same chromatic number. The proof depends on combining topological methods
(namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric probabil-
ity arguments. The rate we obtain is best possible, up to a constant factor — if
ε → 0 faster than this, we show that the graph is (d + 1)-colorable with high
probability.

3. M. Kahle, M. Tian, and Y. Wang. Local cliques in ER-perturbed random geomet-
ric graphs. ISAAC (International Symposium on Algorithms and Computation)
(2019).

Let G∗X be a random geometric graph sampled from a nice measure on a metric
space X = (X ,d). The input observed graph Ĝ(p,q) is generated by remov-
ing each existing edge from G∗X with probability p, while inserting each non-
existent edge to G∗X with probability q. We refer to such random p-deletion and
q-insertion as ER-perturbation.

In this paper we consider a localized version of the classical notion of clique
number for this type of random graphs. Specifically, we study the edge clique
number for each edge in a graph, defined as the size of the largest clique(s) in the
graph containing that edge. Given an ER-perturbed random geometric graph, we
show that the edge clique number presents two fundamentally different types of
behaviors, depending on which type of randomness it is generated from.

10



Our main interest is an application to a certain metric reconstruction problem.

4. S. Fadnavis, M. Kahle, and F. Martinez-Figueroa. Warmth and mobility of ran-
dom graphs. submitted. (arXiv:1009.0792).

A graph homomorphism from the rooted d-branching tree φ : T d → H is said
to be cold if the values of φ for vertices arbitrarily far away from the root can
restrict the value of φ at the root. Warmth is a graph parameter that measures
the non-existence of cold maps. We study warmth of random graphs G(n, p),
and for every d ≥ 1, we exhibit a nearly-sharp threshold for the existence of cold
maps. As a corollary, for p = O(n−α) warmth of G(n, p) is concentrated on at
most two values. As another corollary, a conjecture of Lovász relating mobility
to chromatic number holds for “almost all” graphs. Finally, our results suggest
new conjectures relating graph parameters coming from statistical physics with
graph parameters coming from equivariant topology.

5. M. Kahle, M. Tian, Y. Wang. On the clique number of noisy random geometric
graphs. submitted, 2019.

Let Gn be a random geometric graph, and then for q, p ∈ [0,1) we construct a
(q, p)-perturbed noisy random geometric graph Gq,p

n where each existing edge
in Gn is removed with probability q, while and each non-existent edge in Gn is
inserted with probability p. We give asymptotically tight bounds on the clique
number ω

(
Gq,p

n
)

for several regimes of parameter.

6. B. Braun, K. Bruegge, M. Kahle. Facets of Random Symmetric Edge Polytopes,
Degree Sequences, and Clustering. submitted. (arXiv:2204.07239).

Symmetric edge polytopes are lattice polytopes associated with finite simple
graphs that are of interest in both theory and applications. We investigate the
facet structure of symmetric edge polytopes for various models of random graphs.
For an Erdős–Rényi random graph, we identify a threshold probability at which
with high probability the symmetric edge polytope shares many facet-supporting
hyperplanes with that of a complete graph. We also investigate the relationship
between the Watts-Strogatz clustering coefficient and the number of facets for a
graph with either a fixed number of edges or a fixed degree sequence. We use
well-known Markov Chain Monte Carlo sampling methods to generate empirical
evidence that for a fixed degree sequence, higher Watts-Strogatz clustering in a
connected graph corresponds to higher facet numbers in the associated symmet-
ric edge polytope.

Discrete geometry
1. M. Kahle. A generalization of the chromatic number of the plane. Geombina-

torics 10 (2000), no. 2, 69–74.
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Define a graph denoted (Rd ,1) with vertices corresponding to points in Eu-
clidean space Rd , and with {x,y} an edge whenever d(x,y) = 1. The Hadwiger–
Nelson problem asks for the chromatic number of (R2,1) . We define a class of
graphs Gθ varying continuously with a parameter θ such that G0 = (R1,1) and
Gπ/2 = (R2,1) . We study the chromatic numbers of these graphs, and identify
ranges of θ where χ(Gθ ) = 2,3,4.

2. M. Kahle. Scatters, unavoidable shapes, and crystallization. Geombinatorics 15
(2006), no. 3, 138–149.

We study (n,k)-scatters, which are regular n-gon tiles arranged so that each tile
shares edges with at least k others. To measure how much freedom there is in
arranging scatters, we ask which shapes are unavoidable. It turns out that for a
few choices of (n,k) there are infinite unavoidable shapes, but otherwise they are
finite. We discuss the infinite case as an analogue of crystallization. The main
result here is that besides the trivial situations when there’s a unique scatter,
there are only four instances of this. Scatters crystallize nontrivially just when
(n,k) = (5,3), (7,3), (10,4), or (14,4).

3. M. Kahle. Points in a triangle forcing small triangles Geombinatorics 18 (2009),
no. 3, 114–128.

An old theorem of Alexander Soifer’s is the following: Given five points in a
triangle of unit area, there must exist some three of them which form a triangle
of area 1/4 or less. It is easy to see that this is not true if “five” is replaced by
“four”, but can the theorem be improved in any other way? We discuss in this
article two different extensions of the original result. First, we allow the value
of “small”, 1/4, to vary. In particular, our main result is to show that given five
points in a triangle of unit area, then there must exist some three of them deter-
mining a triangle of area 6/25 or less. Second, we put bounds on the minimum
number of small triangles determined by n points in a triangle, and make a con-
jecture about the asymptotic right answer as n tends to infinity.

4. M. Kahle and B. Taha. New lower bounds on χ
(
Rd
)

for d = 8, . . . ,12. Geombi-
natorics 24 (2015), 109–116.

We improve the best lower bounds on the chromatic number of Euclidean space
χ
(
Rd
)

in dimensions d = 8, . . . ,12. The new results depend in part on extensive
computer calculations.

5. M. Kahle and E. Roldán. Polyominoes with maximally many holes. Geombina-
torics 29 (2019), no. 1, 5–20.

What is the maximum number of holes that a polyomino with n tiles can en-
close? Call this number f (n). We show that if nk =

(
22k+1 +3 ·2k+1 +4

)
/3 and

hk =
(
22k−1

)
/3, then f (nk) = hk for k≥ 1. We also give nearly matching upper
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and lower bounds for large n, showing in particular that f (n) = (1−o(1))n/2.

6. M. Kahle, F. Martinez-Figueroa, and A. Soifer. A square-grid coloring problem.
Geombinatorics 29 (2020), no. 4, 167–184.

Suppose that n≥ 2, and we wish to plant k different types of trees in the squares
of an n× n square grid. We can have as many of each type as we want. The
only rule is that every pair of types must occur in an adjacent pair of squares
somewhere in the grid. The question is: given n, what is the largest that k can
be? Denote this number by Γ(n), and call this the complete coloring number of
the n× n grid. A little thought shows that Γ(n) ≤ 2n− 1. The main question
we are interested in is whether Γ(n) = 2n−1 for every n≥ 2. Wer discuss why
equality holds for all sufficiently large n, and we also show that Γ(n) ≥ 2n− 9
for every n≥ 2,

Expository writings, technical reports, miscellanea
1. M. Kahle. Geometric random complexes. Oberwolfach Report No. 29/2008, p.

1626–1628.

This is an Oberwolfach report on what eventually became the paper “Random
geometric complexes”.

2. M. Kahle. On Branko Grünbaum’s 80th birthday. Geombinatorics 19 (2009),
no. 2, 42–45.

I recall some things I appreciated about Branko Grünbaum, as a teacher and
mentor.

3. M. Kahle. The geometry of random spaces. Institute for Advanced Study (IAS),
Princeton, NJ. Institute Summer Letter. Summer 2011.

This is an article loosely related to some of my research in stochastic topology,
written for a lay audience. It appeared in the Institute for Advanced Study’s sum-
mer newsletter.

4. M. Kahle. Expansion properties of random simplicial complexes. Oberwolfach
Report No. 24/2012, p. 1442-1445, DOI: 10.4171/OWR/2012/24.

This is an Oberwolfach report on random simplicial complexes, and how they
provide compelling “high-dimensional expanders” from both spectral and cobound-
ary expansion points of view.
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5. M. Kahle. Topology of random simplicial complexes: a survey. AMS Contemp.
Math., 620 (2014), 201–221.

This expository article is based on a lecture from the Stanford Symposium on
Algebraic Topology: Application and New Directions, held in honor of Gunnar
Carlsson, Ralph Cohen, and Ib Madsen.

6. M. Kahle. Curiosities: Permutation Puzzles from Archimedes to the Rubik’s
Cube. Institute for Advanced Study (IAS), Princeton, NJ. Institute Summer Let-
ter. Summer 2015.

This is an article on mathematics of permutation puzzles, written for a lay audi-
ence. It appeared in the Institute for Advanced Study’s summer newsletter.

7. M. Kahle. Configuration spaces of disks. Oberwolfach Report No. 45/2015, p.
2652, DOI: 10.4171/OWR/2015/45.

This Oberwolfach report briefly overviews our first few papers in topological
statistical mechanics.

8. M. Kahle. Book chapter on “Random Simplicial Complexes” in Handbook of
Discrete & Computational Geometry, 3rd Edition (2017), CRC Press (25 pages).

In this book chapter we overview topological and geometric properties of (ab-
stract and geometric) random simplicial complexes. We introduce a few of the
fundamental models in Section 1. We review high-dimensional expander-like
properties of random complexes in Section 2. We discuss threshold behavior
and phase transitions in Section 3, and Betti numbers and persistent homology
in Section 4.

9. O. Bobrowski and M. Kahle. Topology of random geometric complexes: a sur-
vey. Journal of Applied & Computational Topology, 331–364 (2018).

This is a survey of topology of random geometric simplicial complexes.

10. M. Kahle. Configuration spaces of disks in an infinite strip. Oberwolfach Report
No. 39/2019, p. 2421–2424, DOI: 10.4171/OWR/2019/39.

This is an Oberwolfach report about the paper with Alpert and MacPherson with
the same title.

11. M. Kahle. Branko Grünbaum in many dimensions. Geombinatorics 28 (2019),
no. 3, 140–146.

This is a survey article, listing some open problems that I think Branko Grünbaum
was interested in.

14


