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THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES

ERIC BABSON, CHRISTOPHER HOFFMAN, AND MATTHEW KAHLE

1. Introduction

In this article we find the threshold for simple connectivity of the random 2-
dimensional simplicial complexes Y (n, p) introduced by Linial and Meshulam [10]
to be roughly p = n−1/2. One motivation for this is continuing the thread of prob-
abilistic topology initiated by Linial and Meshulam [10], and even earlier by Erdős
and Rényi [3]. (Other recent work concerning the topology of random simplicial
complexes can be found in [8, 9, 11, 14].)

Another motivation for this study is the connection to the random groups stud-
ied in geometric group theory [12]. In face we must use geometric group theory
techniques to show that in the sparse regime the fundamental group is hyperbolic
on the way to showing that it is nontrivial; in particular, we apply Gromov’s local-
to-global principle for linear isoperimetric inequalities.

Erdős and Rényi initiated the now vast subject of random graphs with their
edge-independent model G(n, p) [3].

Definition 1.1. The Erdős-Rényi random graph G(n, p) is the probability space of
all graphs on the vertex set [n] := {1, 2, . . . , n} with each of the

(
n
2

)
possible edges

included independently with probability p. We say that G(n, p) asymptotically
almost surely (a.a.s.) has property P if limn→∞ P(G(n, p) ∈ P) = 1.

A seminal result is that p = log n/n is a sharp threshold for the connectivity of
the random graph.

Theorem 1.2 (Erdős and Rényi [3]). Let ω(n) → ∞ as n → ∞.

(1) If p = (log n− ω(n))/n, then G(n, p) is a.a.s disconnected, and
(2) if p = (log n+ ω(n))/n, then G(n, p) is a.a.s. connected.

Nathan Linial and Roy Meshulam exhibited a 2-dimensional homological ana-
logue of Theorem 1.2. They defined a model of random 2-dimensional simplicial
complexes Y (n, p) to be the probability space of simplicial complexes on the vertex

set [n] and edge set
(
[n]
2

)
, with each 2-face appearing independently with probabil-

ity p.
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Theorem 1.3 (Linial-Meshulam [10]). Let ω(n) → ∞ as n → ∞. If p = (2 logn−
ω(n))/n, then a.a.s. H1(Y,Z/2Z) �= 0, and if p = (2 log n + ω(n))/n, then a.a.s.
H1(Y,Z/2Z) = 0.

Meshulam and Wallach extended this result to Hd−1(Y,Z/qZ) for arbitrary
primes q and d-dimensional complexes [11].

Our first result is that when p is sufficiently large, π1(Y (n, p)) a.a.s. vanishes.

Theorem 1.4. Let ω(n) → ∞ as n → ∞. If

p ≥
(
3 log n+ ω(n)

n

)1/2

,

then a.a.s. π1(Y ) = 0.

Our main result and most of the work of this paper is to show that the exponent
1/2 in Theorem 1.4 is the best possible.

Theorem 1.5. For any constant ε > 0, if

p = O

(
n−ε

n1/2

)
,

then π1(Y (n, p)) is a.a.s. hyperbolic and nontrivial.

The proof of Theorem 1.5 relies on general notions of negative curvature due to
Gromov. As the Linial-Meshulam result is an analogue of the Erdős-Rényi theorem,
our result is analogous to certain thresholds for random groups. The random group
seemingly closest to what we study here is the following triangular model.

Definition 1.6. Let 0 ≤ d ≤ 1. A triangular random group on n relators at density
d is the group presented by H = 〈b1, . . . , bn | R〉, where R = {r1, r2, . . . , rt}, and
each ri is chosen i.i.d. uniformly from the T = 2n(2n− 1)2 reduced words of length
3, and t = 
T d�.

Żuk characterized the threshold for vanishing of H as n → ∞.

Theorem 1.7 ([15]). If d < 1/2, then H is a.a.s. nontrivial hyperbolic, and if
d > 1/2, then H is a.a.s. trivial.

Theorem 1.7 is similar in spirit to Theorem 1.5, but the proof of Theorem 1.5
seems to require new methods. We prove some intermediate results which may be
of independent interest. In particular, we classify the homotopy type of simplicial
complexes with a sparsity of faces. See Section 3.1 for the notation.

Theorem 1.8. If X is a finite 2-dimensional simplicial complex such that

2f0(W ) > f2(W )

for all subcomplexes W ⊂ X, then X has the homotopy type of a wedge of circles,
spheres and real projective planes. Thus the fundamental group of X is a free
product of Z’s and Z/2Z’s.

We use this to obtain a linear isoperimetric inequality for null-homotopic loops
in X. (We precisely define cycles γ and the notions of length L(γ) and area A(γ)
on page 4 in Section 3.)
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Theorem 1.9. For any ε > 0 there exists β(ε) > 0 such that if X is a finite,
2-dimensional simplicial complex with

(2− ε)f0(W ) > f2(W )

for all subcomplexes W ⊂ X, then every contractible cycle γ satisfies

L(γ) > β(ε)A(γ).

We also need a version of Gromov’s general principle that one can go from local
linear isoperimetric inequalities to global ones [5], a method which has been very
useful in the study of random groups.

The rest of the paper is organized as follows. Section 2 contains the proof of
Theorem 1.4. Section 3 contains the outline of the proof of Theorem 1.5. In
Section 4 we prove Theorem 1.8. We use this in Section 5 to prove Theorems 1.5
and 1.9. Section 6 discusses open problems and further connections of this work
with geometric group theory. The appendices prove a technical lemma and the
version of Gromov’s local-to-global principle that we need.

2. Proof of Theorem 1.4

If X is a 2-dimensional simplicial complex and v ∈ F0(X) is a vertex, define the
link of v, denoted lkX(v), to be the 1-dimensional simplicial complex (graph) with

F0(lkX(v)) = {{p}|{v, p} ∈ F1(X)}

and

F1(lkX(v)) = {{p, q}|{v, p, q} ∈ F2(X)}.

The key observation necessary to prove Theorem 1.4 is the following.

Lemma 2.1. For any a, b, c ∈ [n] and simplicial complex Y such that

(1) lkY (a) ∩ lkY (b) is connected and
(2) there exists d ∈ [n] such that {a, b, d} ∈ F2(Y ),

then the 3-cycle {{a, b}, {a, c}, {b, c}} bounds an embedded disk in Y .

Proof. Since lk(a) ∩ lk(b) is connected, there exists a sequence {xi}k1 such that
c = x1, d = xk, and {xi, xi+1} ∈ lk(a) ∩ lk(b) for all i < k. The edge {xi, xi+1} ∈
lk(a) ∩ lk(b) if and only if {{a, xi, xi+1}, {b, xi, xi+1}} ⊆ F2(Y ). So we see that
{{a, b}, {a, c}, {b, c}} bounds an embedded disk, as in Figure 1.

�

Note that for each pair of vertices a, b ∈ [n] the distribution of

lkY (a) ∩ lkY (b)

is identical to the Erdős-Rényi random graph G(n−2, p2). To complete the proof of
Theorem 1.4 we show that if p is sufficiently large, then the hypotheses of Lemma 2.1
are a.a.s. satisfied for every distinct a, b ∈ [n]. This requires bounding the prob-
ability that G(n, p) is not connected when p is a bit larger than the threshold of
log(n)/n. We delegate the proof of Lemma 2.2 to Appendix 1.
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c=x1

a b

d=xk

x2

Figure 1. Since lk(a)∩lk(b) is connected and edge ab is contained
in at least one face, the 3-cycle abc bounds an embedded topological
disk.

Lemma 2.2. Let ω(n) → ∞ as n → ∞. If p =
(

3 logn+ω(n)
n

)1/2

, then a.a.s.

(1) lkY (a) ∩ lkY (b) is connected and
(2) there exists d ∈ [n] such that {a, b, d} ∈ F2(Y )

for all distinct {a, b} ⊆ [n] a.a.s.

Proof of Theorem 1.4. By Lemmas 2.1 and 2.2 we have that a.a.s. every
3-cycle is contractible. That Y is a.a.s. simply connected follows as F1(Y ) is the
complete graph and every k-cycle in the fundamental group is a product of 3-cycles.
�

A more complicated version of this argument was used in [9] to prove the vanish-
ing of the kth homology Hk for arbitrary k, for a different kind of random simplicial
complex.

3. Outline of Theorem 1.5

3.1. Notation. For a 2-dimensional simplicial complex X we write F0 = F0(X),
F1 = F1(X) and F2 = F2(X) for the sets of vertices, edges and faces of X and
fi = |Fi| for the respective numbers. For an edge e ∈ F1(X) we write f2

e (X) =
|{t ∈ F2(X) : e ⊂ ∂(t)}| for the number of 2-faces containing e in their boundaries.

Definition 3.1. We define Cr to be the cycle of length r with F0(Cr) = [r] =
{1, . . . , r} ([0] = ∅) and

F1(Cr) =

r−1⋃

i=1

{
{i, i+ 1}

}
∪
{
{r, 1}

}
.

Definition 3.2. Let γ : Cr → X. We say that (Cr
b−→ D

π−→ X) is a filling of γ if
γ = πb and the mapping cylinder Cyl(b) of b is a disk with boundary Cr × 0.

Definition 3.3. Define the area of a curve γ to be

A(γ) = min{f2(D)| (C b−→ D
π−→ X) is a filling of γ}
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Figure 2. A minimal filling of a 12-cycle with A(γ) = 2.

if γ is contractible and A(γ) = ∞ if γ is not contractible. We say that a filling

(C
b−→ D

π−→ X) of γ is minimal if A(γ) = f2(D).

See Figure 2 for an example of a filling.

3.2. Sketch of proof of Theorem 1.5. Write Id[3] : [3] → [3] for the identity
map. We show that for a typical Y (with probability approaching 1) the cycle Id[3]
is not contractible and thus Y is not simply connected. The main step is to prove
a linear isoperimetric inequality. This means that there exists ρ′ = ρ′(ε) such that
for a typical Y and for any γ : Cr → Y , either A(γ) = ∞ or

(1) A(γ) ≤ ρ′r.

Once we have a linear isoperimetric inequality for a typical Y , then we have

P(3ρ′ < A(Id[3]) < ∞) → 0.

Then we complete the proof by showing that

P(A(Id[3]) ≤ 3ρ′) → 0.

To carry out this program we introduce the following definitions. Throughout this
section, X is a 2-complex with vertex set F0(X) = [n].

Definition 3.4. We write

e(X) = min
Z⊆X

(
f0(Z)

f2(Z)

)
.

More generally, if [w] ⊆ F0(X), then we write

ew(X) = min
Z⊆X

[w]⊂F0(Z)

(
f0(Z)− w

f2(Z)

)
.

We say that X is ε-admissible if e(X) ≥ 1
2 + ε. For some w ≤ n we say that X is

(ε, w)-admissible if ew(X) ≥ 1
2 +ε. We say that a 2-complex X is admissible (w-

admissible) if there exists some ε > 0 such thatX is ε-admissible ((ε, w)-admissible).
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We define things generally for convenience in notation, but in fact we will only ever
use the case w = 3.

The following lemma is the first step in showing the existence of a linear isoperi-
metric inequality.

Lemma 3.5. For every ε > 0 there exists ρ such that for every X with e(X) > 1
2+ε

and γ : Cr → X, either A(γ) = ∞ or

(2) A(γ) ≤ ρr.

The proof of Lemma 3.5 appears in Section 5 and requires the use of several other
lemmas in between. The key to proving Lemma 3.5 is to analyze the topology of
ε-admissible complexes. In Lemma 4.1 we show that every ε-admissible 2-complex
is homotopy equivalent to a wedge product of circles, spheres and projective planes.

We cannot apply Lemma 3.5 directly to get a linear isoperimetric inequality for
Y because for a typical Y we have that f2(Y ) = O(n2) (since we may assume
ε < 1/2) and f0(Y ) = n. Thus e(Y ) = O( 1n ). Instead we analyze the subcomplexes
X ⊂ Y with f2(X) small. The next lemma tells us which small subcomplexes can
be embedded in a typical Y .

Definition 3.6. For simplicial complexes Z and X with F0(Z)∪F0(X) ⊂ Z
+, and

with [w] ⊆ F0(Z) ∩ F0(X), a w-inclusion g of Z into X is an injective simplicial
map g : Z → X such that g(i) = i for all 1 ≤ i ≤ w.

Definition 3.7. Let X be a simplicial complex with F0(X) = [n] for some n. X
is (ε,m)-sparse if for every 2-complex Z with

(1) f2(Z) ≤ m and
(2) f0(Z) < ( 12 + ε)f2(Z),

there is no embedding of Z in X. X is called (ε,m, 3)-sparse if for every 2-complex
Z with

(3) [3] ⊆ F0(Z),
(4) f2(Z) ≤ m and
(5) f0(Z)− 3 < ( 12 + ε)f2(Z),

there is no 3-inclusion of Z into X.

Lemma 3.8. For every m ∈ Z
+, ε > 0, and p = O(n− 1

2−ε), we have that Y ∈
Y (n, p) is (ε,m, 3)-sparse a.a.s.

Proof. For fixed m and r there are only finitely many complexes Z with f2(Z) < m.
Thus to prove that Y is (ε,m, 3)-sparse a.a.s. we only need to prove that for any
given complex Z which does not satisfy conditions 3, 4 and 5 that

(3) P

(
Z has a 3-inclusion in Y

)
= 0 a.a.s.

If Z does not satisfy conditions 3, 4 and 5, then

f0(Z)− 3 <

(
1

2
+ ε

)
f2(Z)
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and hence

P
(
Z has a 3-inclusion into Y

)
≤ E

(
number of 3-inclusions of Z into Y

)

≤ nf0(Z)−3pf2(Z)

≤ nf0(Z)−3Cf2(Z)n−( 1
2+ε)f2(Z)

< Cmn−α

for some α > 0. �

We establish a linear isoperimetric inequality for Y by combining Lemmas 3.5
and 3.8, together with Gromov’s local-to-global principle. Similar results for groups
appear in [6] and [13], but we require the result for 2-dimensional simplicial com-
plexes, so we include a proof in Appendix 2 for the sake of completeness.

Theorem 3.9. If X is a finite simplicial complex for which every γ : Cr → X
satisfying A(γ) ≥ 44ρ2 or A(γ) ≤ ρ

44r also has every γ : Cr → X satisfying
A(γ) = ∞ or A(γ) ≤ ρr.

The local-to-global principle gives us the following.

Lemma 3.10. For every ε > 0 there exist m and ρ′ such that every (ε,m)-sparse
complex X and every γ : Cr → X satisfies either A(γ) = ∞ or

A(γ) < ρ′r.

Proof. Given ε > 0 choose ρ as in Lemma 3.5 and then K and ρ′ as in Theorem 3.9.
Thus by Lemma 3.5 the hypothesis of Theorem 3.9 is satisfied. Thus by Theorem
3.9, the lemma holds. �

The same technology that we use to prove Lemma 3.5 can also be used to prove
the following lemma.

Lemma 3.11. For every X such that [3] ⊆ F0(X) with e3(X) > 0 the curve Id[3]
is not contractible in X.

The proof of Lemma 3.11 appears in Section 5. Once we have established these
lemmas we complete the proof by showing that in a typical complex that the curve
Id[3] is not contractible.

Lemma 3.12. For any ε > 0 there exists an m such that for every 2-complex X
which is (ε,m, 3)-sparse, the curve Id[3] is not contractible in X.

Proof. For ε > 0 choose ρ as in Lemma 3.5 and then K and ρ′ as in Theorem 3.9.
Then set m = max(K, 3ρ′). As X is (ε,m, 3)-sparse, every Z ⊂ X with [3] ∈ F0(Z)
and f2(Z) ≤ 3ρ′ ≤ m satisfies e3(Z) > ε. Thus by Lemma 3.11 the curve Id[3] is
not contractible in Z. Thus A(Id[3]) > 3ρ′.

By Lemma 3.8, X is a.a.s. (ε,m, 3)-sparse. Thus every Z ⊂ X with [3] ∈ F0(Z)
and f2(Z) < K ≤ m satisfies e3(Z) > ε. Thus the hypotheses of Lemma 3.5 are
satisfied for every such Z. Thus X satisfies the hypotheses of Theorem 3.9 and
A(Id[3]) = ∞ or A(Id[3]) < 3ρ′. Thus A(Id[3]) = ∞ and Id[3] is not contractible in
X. �

Proof of Theorem 1.5. That π1(Y ) is nontrivial follows from Lemmas 3.8 and
3.12.
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That it is hyperbolic follows from Lemmas 3.8 and 3.10, as follows. If there is a
linear isoperimetric inequality on Y , then there is a linear isoperimetric inequality

on π1(Y ) as well; indeed it is well known that π1(Y ) is quasi-isometric to Ỹ , the
universal cover of Y . Groups which satisfy a linear isoperimetric inequality also
satisfy a “thin triangles” condition and are Gromov hyperbolic [5]. �

4. Homotopy type of admissible 2-complexes

The following lemma is a strengthening of Theorem 1.8.

Lemma 4.1. If X is an admissible, finite, 2-dimensional simplicial complex, then
every connected component of |X| has the homotopy type of a wedge of circles,
spheres and real projective planes. Thus π1(X) is isomorphic to a free product of
Zs and Z/2Zs and it is a hyperbolic group.

Moreover there is a subcomplex Z ⊆ X with F1(Z) = F1(X) for which the
inclusion induces an isomorphism of fundamental groups and χ(Z ′) ≤ 1 for any
connected subcomplex Z ′ ⊆ Z.

The proof of Lemma 4.1 requires several other intermediate results and appears
at the end of this section.

4.1. Stratified complexes and webs. The proof of Lemma 4.1 is by induction.
We assume by way of contradiction that there is a minimal counterexample and
make reduction moves to find a smaller one. However, there is a fairly serious
complication in that the reduction moves do not always leave us with a simplicial
complex. For this reason we introduce the following more general complexes.

For a compact manifold with boundary M we use the notation ∂M for the
boundary of M , and M◦ for the interior. (For a 0-dimensional M0, ∂M0 = ∅ and
M◦

0 = M0.)

Definition 4.2. A (2-dimensional) stratified complex N consists of

(1) a topological space N homeomorphic to the realization of a finite simplicial
2-complex,

(2) for each i ∈ {0, 1, 2}, a compact i-dimensional manifold with boundary Mi

(not necessarily connected), and
(3) immersions ψi : Mi → N such that the restrictions to interiors ψi|M◦

i
are

embeddings, the images ψi(M
◦
i ) partition N , and ψi(∂Mi) ⊆ ψi−1(Mi−1).

We call the connected components of Mi the i-dimensional faces of N and use
the upper index to distinguish them. Then the set of i-dimensional faces of N is

denoted by Fi(N) so that Mi =
⋃

φ∈Fi(N) M
φ
i .

We refer the reader to Figure 3 for an example of a stratified complex. We note
that the structure is not quite the same as a CW-complex, for example, since the
cells need not be topological disks. In this example, M2 is the disjoint union of two
disks and a cylinder, M1 is the disjoint union of a line segment and a circle, and
M0 is a point. If one of the disks in M2 were replaced with a cross-cap, N would
be homeomorphic to a projective plane.
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e
v

f

f

f

1

3

2
2

1
1

Figure 3. A stratified complex N , homeomorphic to a sphere. In
this example, F0(N) = 1, F1(N) = 2, and F2(N) = 3, and we also
have, for example, that fv

1 = 2. fe1
2 = 2, fv

2 = 2.

Definition 4.3. If N is a stratified complex, i < i′, u ∈ Fi(N) and u′ ∈ Fi′(N),
then write:

(1) fi(N) = |Fi(N)|,

(2) fu
u′(N) = |ψ−1

i (x) ∩Mu′

i′ | for any x ∈ ψi(M
◦u
i ),

(3) f i
u′(N) =

∑
u∈Fi(N) f

u
u′(W ) and

(4) fu
i′ (N) =

∑
u′∈Fi′ (N) f

u
u′(W ).

For every stratified complex N and e ∈ F1(N), Me
1 is homeomorphic to either

an interval or a circle. At times we need to distinguish these cases, so we introduce
the following additional notation.

Definition 4.4. We write

(1) F1,c(N) = {e ∈ F1(N)|Me
1
∼= S1} ⊆ F1(N),

(2) f1,c(N) = |F1,c(N)| and
(3) for a vertex u′ ∈ F0(N) write f1,c

u′ =
∑

u∈F1,c(N) f
u
u′(W ) . . .

Definition 4.5. A web W is a stratified complex with an atom-free measure μ on
M1 which pulls back via ψ to a measure (also μ) on ∂M2 with μ(Me

1 ) ∈ N for every
e ∈ F1(W ).

A subweb W ′ of a web W is uniquely specified by subsets Fi(W
′) ⊆ Fi(W ). If

W is a web and v ∈ F0(W ) is a vertex, then lkW (v) is the link of v in W which is
again a stratified complex, with fi(lkW (v)) = fv

i+1(W ).

Definition 4.6. If X is a finite simplicial complex, then W = W (X) is the as-
sociated web with |X| = |W |, Fi(W ) = Fi(X), Mi(W ) = Fi(X) × Δi a disjoint
union of standard simplices, ψ restricted to each face is an embedding and every
edge e ∈ F1 has length one (μMe

1 = 1). Thus we can consider simplicial complexes
as special cases of webs.
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Two very useful functions from webs to integers are the Euler characteristic
χ(W ) = χ(|W |) and the length

L(W ) = 2μ(M1(W ))− μ(∂M2(W )).

Definition 4.7. We say that a nonempty web W is admissible if every nonempty
subweb W ′ satisfies

(2χ+ L)(W ′) > 0.

Definition 4.8. Other useful functions from webs to integers include

(1) d(W ) = max{i|fi(W ) > 0} (dimension),
(2) δ(W ) = min{fu

i |u ∈ Fi−1(W ), 0 < i ≤ d(W )} (minimum degree) and
(3) g(W ) = min{μ(S)|f : S → ψM1 is an isometric embedding of a circle}

(girth).

Definition 4.9. A web W is a refinement of another web W ′ if there is a home-
omorphism r : |W | → |W ′| and for each u ∈ Fi(W

′) there exists a subweb Wu of
W with the restriction of r to |Wu| a homeomorphism onto ψ(Mu

i ). If i = 1 there
is a measure on ψ(Mu

1 ) pulling back to μ and μ′.

Up to isomorphism, a refinement depends only on the subwebs {{Wu}u∈Fi(W ′)}i.

Lemma 4.10. If X is a simplicial 2-complex, W (X) is the associated web and
W (X) is a nontrivial refinement of W ′, then

(1) g(W (X)) ≥ 3,
(2) if X is admissible, then so is W (X),
(3) χ(M2(W

′)) =
∑

t∈F2(W ′) χ(M
t
2),

(4) χ(M0(W
′)) = f0(W

′),
(5) |W ′| ∼= |W |,
(6) d(W ′) = d(W ),
(7) g(W ′) = g(W ),
(8) δ(W ) = min{δ(W ′), 2} and
(9) if W is admissible, then so is W ′.

Proof. These all follow directly from the definitions. �

Lemma 4.11. If W is a 2-dimensional stratified complex so that no vertex link
decomposes as a (nontrivial) wedge sum with a circle as one of the summands, then
there is a unique stratified complex CW such that

(1) W is a refinement of CW and
(2) δ(CW ) �= 2.

Proof. The construction of CW follows. Uniqueness is clear.
Set M0,s(W ) = {v ∈ M0(W ) | |{e ∈ F v

1 |f2
e �= 2}| = s}.

Set M0(CW ) =
⋃

s 	∈{0,2} M0,s(W ).

Set

M1(CW ) = (
⋃

e∈F1(W ),f2
e 	=2

Me
1 ∪M0,2(W ))/ ∼,

where a ∼ v if a ∈ M1(W ), v ∈ M0,2(W ) and ψ(a) = ψ(v).
Set

M2(CW ) = M2(W )
⋃

e∈F1(W ),f2
e=2

Me
1 ∪M0,0(W )/ ∼,
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where a ∼ b if ψ(a) = ψ(b) and either a ∈ M1(W ) and b ∈ M0(W ) or a ∈ M t
2 and

b ∈ Me
1 and there is an inclusion of Me

1 into M t
2 commuting with ψ.

The map ψ(CW ) : M(CW ) → |CW | = |W | is then inherited from ψ for W .
It is now straightforward to check that each Mi(CW ) is a manifold with bound-

ary, with interior points precisely the equivalence classes of points in the interior of
some Mj(W ).

The other properties are straightforward to check. �
Definition 4.12. A graph is 2-connected if it has at least three vertices and is
connected after deleting any vertex.

Lemma 4.13. If W is a web with all vertex links 2-connected, then the hypotheses
of Lemma 4.11 hold.

Proof. The hypothesis of Lemma 4.11 is that no vertex link of W decomposes as a
(nontrivial) wedge sum with a circle as one of the summands. If some vertex link
lk(v) did have such a decomposition, then by definition of wedge sum there would
be a cut vertex in lk(v), contradicting the assumption that lk(v) is 2-connected. �

Now we introduce a collapsing construction.

Definition 4.14. If A ⊆ W is a subcomplex of a 2-dimensional stratified complex
W , then write K = KA(W ) for the maximal subcomplex of W for which every edge
e ∈ F1(K) either has f2

e (K) ≥ 2 or f2
e (K) ≥ 1 and e ∈ F1(A).

This collapsing construction is useful in this section with A = ∅ and again in the
next section with more general A.

Lemma 4.15. For any web W and A ⊂ W each connected component of |W | has
the homotopy type of a wedge of components of |KA(W )| and circles. Also for any
W , δ(K∅(W )) ≥ 2.

Proof. KA(W ) is obtained from W by a sequence of collapses of cells to wedges of
circles (removing an edge in exactly one face) which induce homotopy equivalences
and deletions of edges not contained in any face. The second statement follows
straight from the definition. �
Lemma 4.16. If W is an admissible 2-dimensional web with g(W ) ≥ 3, then every
connected component of |W | has the homotopy type of a wedge of circles, spheres
and projective planes.

Definition 4.17. Now we put a partial order on the webs. For (i, j), (i′, j′) ∈ Z
2

we say that (i, j) is before (i′, j′) in the lexicographic order if either i > i′ or i = i′

and j < j′. For any web W let
{
fi,j(W ) =

∣
∣{u ∈ Fi(W )|f i+1

u = j}
∣
∣
}

i,j

.

Then to compare two webs W and W ′ let (i, j) be the first pair (in the lexicographic
order) such that

fi,j(W ) �= fi,j(W
′).

Then we say that W is smaller than W ′ if fi,j(W ) < fi,j(W
′).

The proof of Lemma 4.16 requires a few intermediate lemmas, and is by induction
with respect to the partial order we just defined. Whenever we refer to a minimal
counterexample it is minimal with respect to this partial order.
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Lemma 4.18. If W is a minimal counterexample to Lemma 4.16, then δ(W ) ≥ 3.

Proof. We begin by showing that for a minimal counterexample W that W =
K∅(W ) and that every vertex link of W is two-connected (as a graph). Note that
K∅(W ) is admissible, no larger than W and has W homotopy equivalent to the
wedge sum of components of K∅(W ) and some circles. Thus W = K∅(W ) by
minimality, and by Lemma 4.15, δ(W ) ≥ 2.

Next we note that if W has a vertex link which is not 2-connected, then splitting
a vertex into two along a cut point gives a complex with smaller {f1,j} which is
still admissible and homotopy equivalent to W . Splitting one between connected
components gives a complex with smaller {f0,j} which is still admissible and W is
homotopy equivalent to the wedge of its connected components and some circles.
Thus by minimality all vertex links of W are 2-connected and by Lemma 4.13 the
hypotheses of Lemma 4.11 are satisfied. Thus δ(CW ) �= 2.

Note that by Lemma 4.11 the web CW exists, is no larger than W and is
homotopy equivalent to W . Thus as W is minimal, W = CW . Thus we have
δ(W ) = δ(CW ) �= 2 and above we had that δ(W ) ≥ 2. Combining these we get
δ(W ) ≥ 3. �

Definition 4.19. A 2-face t is digon if t ∈ F2(W ) and there exists e, f ∈ F0(W )
with F 1

t = {e, f}.

Lemma 4.20. If W is a minimal counterexample to Lemma 4.16, then W has no
2-face that is a digon.

Proof. Note that if t ∈ F2(W ), then f1
t > 0. If not, then we would have that

M t
2 = |W | is a connected 2-manifold and, as W is admissible, that χ(M t

2) > 0.
Thus W would be a sphere or projective plane and would not be a counterexample.

Note that if any 2-face is a digon, then construct W ′ by choosing a home-

omorphism τ : Me
1 → Mf

1 compatible with ψ on the boundaries and setting
M0(W

′) = M0(W ), M1(W
′) = M1(W )/{a ∼ τ (a)} and M2(W

′) = M2(W )/ ∼,
where any two points of any folded interval are equivalent under ∼. An interval
I ⊆ ∂M2(W ) is folded if it has a midpoint p ∈ I with ψ|I−{p} two to one. Note
that the homotopy type of |W | is the wedge sum of all but one of the components
of |W ′| and some circles. Take W ′′ to be a connected component of W ′ which is
not a wedge of circles, spheres and projective planes. W ′′ clearly has fewer faces
than W and is still admissible. Thus by minimality, W has no digons. �

Definition 4.21. Define μ to be the measure with μ(Me
1 ) = 1 if e ∈ F1(W ) \

F1,c(W ) and μ(Me
1 ) = 3 if e ∈ F1,c(W ).

Lemma 4.22. If W is a minimal counterexample to Lemma 4.16, then either

(1) there exists u ∈ F0(W ) such that

∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
> −2

or
(2) there exists u ∈ F1,c(W ) such that

∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
> −2.
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Proof. For every t ∈ F2(W ),

(4) 1 =
f t
0 + 3f t

1,c

μ(∂M t
2)

and

(5) χ(M) = χ(M0)− χ(M1) + χ(M2).

Let

(6) L(N) = 2μ(M1(N))− μ(∂M2(N)).

Since g(W ) ≥ 3 we have μ ≥ μ. Since δ(W ) ≥ 3 and

L =
∑

e∈F1(W )

(2− f2
e )μ(M

e
1 ),

we have

(7) L(W ) ≤ L(W ).

Finally we note that the definition of μ̄ gives us that

(8) (2μ̄− 2χ)(M1(W )) = 6f1,c(W )

and

(9) μ̄(∂M2(W )) =
∑

t∈F2(W )

f t
0 + 3f t

1,c.

Note that

0 < (2χ+ L)(W )

by definition of admissibility

≤ (2χ+ L)(W )

by (7)

= 2χ(M0(W )) + (2μ− 2χ)(M1(W )) + (−μ(∂M2(W )) + 2χ(M2(W )))

by (5) and (6)

= 2f0(W ) + 6f1,c(W )−
∑

t∈F2(W )

(f t
0 + 3f t

1,c) +
∑

t∈F2(W )

f t
0 + 3f t

1,c

μ(∂M t
2)

(2χ)(M t
2)

term-by-term equalities and using (8), (9) and Lemma 4.10

=
∑

u∈F0(W )

⎡

⎣2 +
∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
⎤

⎦(10)

+
∑

u∈F1,c(W )

3

⎡

⎣2 +
∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
⎤

⎦ from Definition 4.3.(11)

Since the sum is positive at least one of the summands in (10) or (11) must be
positive. Rearranging the summands completes the proof. �
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Lemma 4.23. If there exists u ∈ F1,c(W ) with

∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
> −2,

then W is not a minimal counterexample to Lemma 4.16.

Proof. Fix such a u ∈ F1,c(W ). For a face t ∈ F2(W ) to contribute more than −f t
u

to the sum in (10) or (11) we must have χ(M t
2) > 0, which implies that M t

2 is a
disk. Since by Lemma 4.20, W has no digons, every face contributes at least − 1

3f
t
u

with equality only if M t
2 is a (an embedded) triangle (or f t

u = 0).
If u ∈ F1,c(W ), then by Lemma 4.18 there are at least f2

u ≥ δ(W ) ≥ 3 (weighted)

terms, including either two embedded disks t, t′ ∈ F 2
u with ∂M t

2 = ∂M t′

2 = ψ(Mu
1 ),

or the entire complex is the union of a projective plane with a disk along an em-
bedded circle. In the former case, deleting t gives W ′, which is clearly a smaller
admissible counterexample, contradicting minimality. In the latter case the entire
complex has the homotopy type of a sphere and thus it is not a counterexample. �

Lemma 4.24. If there exists u ∈ F0(W ) with

∑

t∈F2(W )

(
f t
u

2χ(M t
2)

μ(∂M t
2)

− 1

)
> −2,

then W is not a minimal counterexample to Lemma 4.16.

Proof. Fix such a u ∈ F0(W ). Then there are at least f2
u ≥ 9

2 (weighted) terms,

including two embedded disks t, t′ ∈ F 2
u with μ(∂t) = μ(∂t′) = 3 and μ(∂t ∩ ∂t′) ∈

{2, 3}. One sees this by explicitly enumerating all ways to get a positive term with
at least 3 vertices and 5 edges in the link of u. It turns out that the link must
be a triangle with two edges doubled and at least 4 of the edges must come from
triangles and hence all 5 must be embedded. Let t and t′ be two triangles forming
a double edge in the link of u. If ∂t = ∂t′, deleting t gives a smaller counterexample
contradicting minimality as above.

If ∂t �= ∂t′, then a web W ′ with the same homotopy type as W and one fewer 2-
face exists. W ′ is obtained by deleting t and identifying the two edges in (∂t∪∂t′)\
(∂t ∩ ∂t′). It remains to check that W ′ is admissible, contradicting the minimality
of W and completing the proof. Checking admissibility is straightforward. �

Proof of Lemma 4.16. Assume that W is a minimal counterexample. Lemmas
4.22, 4.23 and 4.24 form a contradiction. �
Proof of Lemma 4.1. We note that by Lemma 4.10 for any simplicial complex
X that g(W (X)) ≥ 3. Thus Lemma 4.16 applies to all admissible complexes. This
tells us that for every admissible complex X, the homotopy type of X is a wedge
product of circles, spheres and projective planes. This proves the first claim in the
lemma, which is the same as Theorem 1.8.

To prove the second claim choose j : Z → X to be a minimal subcomplex such
that π1(j) is an isomorphism and f1(Z) = f1(X) (e.g. Z = X). If Z � S2 ∨ Z ′,
then choose a simplicial map f : S → Z with |S| ∼= S2 and H2(f ;Z/2Z) �= 0 and a
2-face t of Z with |f−1(t)| odd. Fix a presentation of

π1(Z \ t) = 〈a1, . . . , as, b1, . . . , bt|b2i = 1 ∀i = 1, . . . , t〉
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and express some element of π1(Z\t) represented by the boundary of t as a cyclically
reduced word [∂t] = w1w2 . . . wv. The restriction f |S\f−1(t) shows that [∂t]r = 1

for some odd r, so w1 = w−1
v and hence v ≤ 1 and [∂t] = 1. Note that

π1(i) : π1(Z \ t) → π1(Z \ t)/〈[∂t]〉 = π1(Z)

is the quotient map (where 〈. . .〉 is the normal closure) and hence an isomorphism,
contradicting the minimality of Z.

�

5. Isoperimetric inequalities

Classifying the homotopy type of admissible complexesX is a major step towards
establishing a linear isoperimetric inequality for Y . However we also need a bound
on the number of faces in the spheres and projective planes. (A family of spheres
with an increasing number of vertices need not satisfy any one linear isoperimetric
inequality.)

To get this bound we now recall the function L (previously defined for webs)
which generalizes the length of the boundary of a disk:

L(X) = 2f1(X)− 3f2(X) =
∑

e∈F1(X)

(2− f2
e ).

Lemma 5.1. If X is an (ε, w)-admissible 2-complex, then

f2(X) ≤ 2χ(X)− 2w + L(X)

2ew(X)− 1
.

Proof. By the definitions of χ, ew and L we get
⎡

⎣
1 −1 1

−1 0 ew(X)
0 2 −3

⎤

⎦

⎡

⎣
f0(X)
f1(X)
f2(X)

⎤

⎦ ≤

⎡

⎣
χ(X)
−w
L(X)

⎤

⎦ .

Multiplying both sides on the left by [2, 2, 1] gives the desired result. �

Lemma 5.2. There exists β = β(ε) > 1 with the following property. Let X be an
ε-admissible connected 2-complex with L(X) ≤ 0 and χ(X) ≤ 1. For any r ∈ N

and any γ : Cr → X which is null-homotopic in X we have

A(γ) < βr.

Proof. We first consider the case when k = 1. As L(X) ≤ 0 and χ(X) ≤ 1, Lemma
5.1 implies that f2(X) ≤ 1/ε. Since L(X) ≤ 0 we also have an upper bound on
f1(X), and since X is connected, this gives an upper bound on f0(X). So there are
only a finite number of X that satisfy the hypotheses of the lemma. By Lemma
4.1 we have that π1(X) is a free product of Z and Z/2Z terms. A free product
of hyperbolic groups is hyperbolic, so π1(X) is hyperbolic. (Here we mean “word
hyperbolic” in the sense of Gromov [5].) Hence we have a linear isoperimetric
inequality on π1(X) with respect to any presentation of the group.

Let T denote any spanning tree of X, and let X/T denote the quotient of X
with all the points of T identified to a single point. We can endow X/T with
the structure of a CW-complex with one vertex, and X/T is easily seen to be a
presentation complex for π1(X).
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Let π : X → X/T be the natural projection map. By assumption, γ(Cr) is
null-homotopic in X, so b(Cr) = π−1γ(Cr) is a trivial word in π1(X). Hence there
is some constant βX such that

A(πγ) < βXL(b(Cr)).

We also have that
L(b(Cr)) ≤ r

since some edges may get contracted in the projection, but the cycle cannot get
longer.

Thus there is a βX such that

A(γ) < βXr.

for all null-homotopic curves γ in X. As there are only finitely many such X we
can set β = maxX βX , and we have that for all γ and X,

A(γ) < βr,

as desired. �

5.1. Proofs of Lemmas 3.5 and 3.11.

Definition 5.3. A simplicial map f : X → Y is a d-immersion if the restriction
to the star of any d-face is an embedding.

Lemma 5.4. If (Cr
b−→ D

π−→ X) is a minimal filling and γ = πb is a 0-immersion,
then π is a 1-immersion.

Proof. See the appendix for the notation. Assume not and choose vertices u �= v of
D with π(u) = π(v) and B(1, u)∩B(1, v) containing at least one edge. Take x and
y to be the two points of B(1, u)∩B(1, v) in the closure of D−〈B(1, {u, v})〉Im(b).

Consider the length-4 loop δ : C4 → D with vertices v, x, u and y. Construct a
smaller filling

(Cr
b−→ D′ π|D′−−−→, X)

of γ, where

D′ =

(
(D − 〈δC4〉Im(b)) ∪ δC4

)
/(u ∼ v).

�

Let Z be any 2-complex, r ∈ N, γ be a 0-immersion γ : Cr → Z and (Cr
b−→ D

π−→
X) be a minimal filling of γ. To show that r > ρf2(D) we will define a subcomplex
DL≤0 ⊂ D. Then we break the proof up into two cases. Lemma 5.9 will cover the
case that f2(D \DL≤0)/f2(D) is bounded away from 0. Lemma 5.10 will cover the
case that f2(DL≤0)/f2(D) is close to 1.

If A ⊂ D we define D \ A ⊆ D to be the pure 2-dimensional subcomplex with
F2(D \A) = F2(D) \ F2(A). We now define DL≤0.

Definition 5.5. Define the pure 2-complexes Zi ⊆ Z with

F2(Zi) = {z ∈ F2(Z
′) : |π−1(z)| ≥ i}.

For each i enumerate the connected components of Zi by {Zi,j}j . Let Q be the
union of the index sets of the connected components of the Zi. Define

QL≤0 = {(i, j) ∈ Q : L(Zi,j) ≤ 0}
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and

Q̄L>0 = {(i, j) ∈ Q : ∀(i′, j′) with Zi,j ⊂ Zi′,j′ we have L(Zi′,j′) > 0}.

Then define

ZL≤0 =
⋃

(i,j)∈QL≤0

Zi,j ⊆ Z

and DL≤0 ⊆ D′ by

F2(DL≤0) = {d ∈ F2(D) | π(d) ∈ ZL≤0}.

Lemma 5.6. For any Z and 0-immersion γ : Cr → Z, any minimal filling (Cr
b−→

D
π−→ X) of γ satisfies

r ≥
∑

(i,j)∈Q̄L>0

L(Zi,j).

Note that the lemma also holds with Q̄L>0 replaced by any order ideal in Q.

Proof. For every edge e ∈ F1(Z) and Q′ ⊂ Q define

|e|Q′

∞ = max
f∈F2(Z):e∈∂f

∣∣
∣
∣
{
(i′, j′) ∈ Q′ : f ∈ F2(Zi′,j′)

}
∣∣
∣
∣

and

|e|Q
′

1 =
∑

f∈F2(Z):e∈∂f

∣
∣∣
∣
{
(i′, j′) ∈ Q′ : f ∈ F2(Zi′,j′)

}
∣
∣∣
∣.

By Lemma 5.4 the filling (C
b−→ D

π−→ X) is a 1-immersion. Thus for any e,

f1(π
−1e ∩ ∂D) ≥ max

(
0,
(
2|e|Q∞ − |e|Q1

))
.

For any e if there exists (i, j) /∈ Q̄L>0 and g, h ∈ F2(Zi,j) such that e ∈ ∂(g ∩h),

then the maximum in the definition of |e|Q̄L>0
∞ is achieved by both g and h and

2|e|Q̄L>0
∞ − |e|Q̄L>0

1 ≤ 0. Thus

max
(
0,
(
2|e|Q∞ − |e|Q1

))
≥ max

(
0,
(
2|e|Q̄L>0

∞ − |e|Q̄L>0

1

))
.
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Putting this together we get

r =
∑

e∈F1(Z)

f1(π
−1e ∩ ∂D)

≥
∑

e∈F1(Z)

max

(
0,
(
2|e|Q∞ − |e|Q1

))

≥
∑

e∈F1(Z)

max

(
0,
(
2|e|Q̄L>0

∞ − |e|Q̄L>0

1

))

≥
∑

e∈F1(Z)

(
2|e|Q̄L>0

∞ − |e|Q̄L>0

1

)

=
∑

e∈F1(Z)

⎛

⎝
∑

(i,j)∈Q̄L>0: e∈F1(Zi,j)

(
2− f2

e (Zi,j)
)
⎞

⎠

=
∑

(i,j)∈Q̄L>0

⎛

⎝
∑

e∈F1(Zi,j)

(
2− f2

e (Zi,j)
)
⎞

⎠

=
∑

(i,j)∈Q̄L>0

L(Zi,j).

�

Recall the definition of KA(Z) in Definition 4.14.

Definition 5.7. Define

Z∞
L≤0 = KZL≤0

(Z) ⊆ Z.

Similarly set

D∞
L≤0 = π−1(Z∞

L≤0) ⊂ D.

Lemma 5.8. For any filling (C
b−→ D

π−→ X),

L(ZL≤0) ≤ 0 and L(Z∞
L≤0) ≤ 0.

Proof. The Zi,j have a natural tree structure generated by containment. Thus we
can write

ZL≤0 =
⋃

(i,j)∈A

Zi,j ,

where L(Zi,j) ≤ 0 for all (i, j) ∈ A. As L is additive on disjoint complexes we get
L(ZL≤0) ≤ 0. By the definition of L∞

L≤0 = KL≤0(Z) every edge

e ∈ F1(Z
∞
L≤0) \ F1(ZL≤0)
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has f2
e (Z

∞
L≤0) ≥ 2. Thus

L(Z∞
L≤0) =

∑

e∈F1(Z∞
L≤0)

(2− f2
e (Z

′))

≤
∑

e∈F1(Z∞
L≤0∩ZL≤0)

(2− f2
e (Z

′))

+
∑

e∈F1(Z∞
L≤0)\F1(ZL≤0)

(2− f2
e (Z

′))

≤ L(ZL≤0)

≤ 0.

�

Lemma 5.9. For every ε > 0 and 2-dimensional simplicial complex Z with

• e(Z) > 1
2 + ε and

• χ(Z ′) ≤ 1 for every connected Z ′ ⊂ Z,

every contractible γ : Cr → Z and minimal filling (Cr
b−→ D

π−→ X) satisfies

(12) f2(D) < βr + 4βf2(D \DL≤0).

Proof. By Definition 5.7 we have the complexes ZL≤0 ⊂ Z∞
L≤0 ⊂ Z and D∞

L≤0 ⊂ D.

Let {Dj} be the connected components of D∞
L≤0. Also define γj : ∂Dj → Z, where

γj(e) = π(e) and let rj be the length of ∂Dj . We will now show that every γj is

contractible in Z∞
L≤0, as (Crj −→ Dj

π|Dj−−−→ Z∞
L≤0) gives a filling of γj .

Take d ∈ D \
⋃

j Dj . Consider C, the connected component of D \
⋃

j Dj con-

taining d. Suppose that C contains no vertex in b(Cr). Let e be an edge in the
boundary of C. Then by our supposition, π(e) ∈ Z∞

L≤0. Let e
′ be an edge not in the

boundary of C. If f2
e′(π(C) ∪ Z∞

L≤0) = 1 and e′ ∩ b(Cr) = ∅, then we could create

a smaller filling by collapsing the two appearances of the face adjacent to e′ onto

a line segment and (Cr
b−→ D

π−→ X) is not minimal. Thus f2
e′(π(C) ∪ Z∞

L≤0) ≥ 2.

Combining these two statements about edges in π(C) we get that

π(C) ⊂ KZ∞
L≤0

(Z∞
L≤0) = Z∞

L≤0.

This is a contradiction as C was defined to be in D \D∞
L≤0 = D \π−1(Z∞

L≤0). Thus

C contains a vertex in b(Cr). This implies that each γj is contractible in Z∞
L≤0.

By Lemma 5.8 we have that L(Z∞
L≤0) ≤ 0. By assumption χ(Z∞

L≤0) ≤ 1. Thus
Lemma 5.2 can be applied and we have that

βrj = β|∂Dj | > A(γj).

By the definition of the Dj , every edge in
⋃
∂Dj is either in the boundary of D or

adjacent to a face in D \D∞
L≤0. Thus

f1(∂D
∞
L≤0) =

∑

j

f1(∂Dj) =
∑

j

rj ≤ r + 3f2(D \D∞
L≤0)

or

(13) r ≥
∑

rj − 3f2(D \D∞
L≤0).
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By the definition of Z∞
L≤0 we have ZL≤0 ⊂ Z∞

L≤0, so

f2(D \D∞
L≤0) ≤ f2(D \DL≤0).

Thus multiplying (13) by β we get

βr ≥
∑

βrj − 3βf2(D \D∞
L≤0)

>
∑

A(γj)− 3βf2(D \D∞
L≤0)

≥ f2(D)− f2(D \D∞
L≤0)− 3βf2(D \D∞

L≤0)

≥ f2(D)− 4βf2(D \D∞
L≤0)

≥ f2(D)− 4βf2(D \DL≤0),

which proves the lemma. �

Lemma 5.10. For every ε > 0 and simplicial complex X with e(X) > 1
2 + ε,

contractible γ : Cr → X and minimal filling (C
b−→ D

π−→ X),

(14) f2(D \DL≤0) <
3

2ε
r.

Proof. We use Lemma 5.1 with w = 0 to get that for each (i, j) ∈ Q̄L>0,

(15) L(Zi,j) + 2χ(Zi,j) ≥ f2(Zi,j)(2e(Zi,j)− 1).

By assumption we have that χ(Zi,j) ≤ 1, L(Zi,j) ≥ 1, and e(Zi,j) > ε, so

3L(Zi,j) ≥ L(Zi,j) + 2

≥ L(Zi,j) + 2χ(Zi,j)

> 2εf2(Zi,j).

Thus by Lemma 5.6,

3r ≥
∑

QL>0

3L(Zi,j)

≥
∑

QL>0

2εf2(Zi,j)

= 2εf2(D \DL≤0).

�

Proof of Lemma 3.5. If A(γ) = ∞, then we are done. If not, then γ is
contractible in X. By Lemma 4.1 we can find a subcomplex Z ⊂ X such that

χ(Z ′) ≤ 1 for all connected Z ′ ⊂ Z and γ is contractible in Z. Let (C
b−→ D

π−→ Z)
be a minimal filling in Z. By the definition of e we have

e(Z) ≥ e(X) ≥ 1

2
+ ε,

so the hypotheses of Lemmas 5.9 and 5.10 apply. Thus we can apply Lemmas 5.9
and 5.10 to γ and Z. The area of γ in X is at most the area of γ in Z, so

AX(γ) ≤ AZ = f2(D).
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Combining Lemmas 5.9 and 5.10, we get

AX(γ) ≤ f2(D)

≤ βr + 4βf2(D \DL≤0)

≤ βr + 4β
3

2ε
r

< βr +
6

ε
βr

<
7β

ε
r.

�
Proof of Lemma 3.11. If Id[3] is contractible in X, then by Lemma 4.1 there
exists Z ⊂ X such that χ(Z ′) ≤ 1 for all connected Z ′ ⊂ Z and Id[3] is contractible

in Z. Let (C
b−→ D

π−→ Z) be a minimal filling of Id[3] in Z. Define Z ′ by F2(Z
′) =

π(F2(D)). Thus Id[3] is a contractible 0-immersion in Z ′ and by Lemma 5.4, we

have that (C
b−→ D

π−→ Z) is a 1-immersion. Thus

L(Z ′) ≤ L(D) ≤ 3.

By Lemma 5.1 we have that

f2(Z
′) ≤ 2χ(Z ′)− 2 · 3 + L(Z ′)

e3(Z ′)

≤ 2 · 1− 2 · 3 + 3

e3(X)

< 0.

This is a contradiction and Id[3] is not contractible in Z ′ or in X. �

6. Open problems

Various kinds of random finitely presented groups have been studied by geometric
group theorists. We refer the interested reader to [12] for a very nice survey and
introduction. One particular model of a random group seems closely related to
π1(Y (n, p)). Let b1, . . . , bn be n distinct symbols, and let W be the set of reduced
words of length 3 in {b±1

1 , . . . , b±1
n }.

Definition 6.1. Let 0 ≤ d ≤ 1. A triangular random group on n relators at density
d is the group presented by H = 〈b1, . . . , bn|R〉, where R is a set of |W |d words
chosen at random uniformly from W .

As before we say that H a.a.s. has property P if P(H ∈ P) → 1 as n → ∞. The
main results about triangular random groups are the following.

Theorem 6.2 ([15]). If d < 1/2, then H is a.a.s. nontrivial hyperbolic, and if
d > 1/2, then H is a.a.s. trivial.

This is analogous to our main result, although there are noteworthy differences.
For instance, in the triangular model, |W | is approximately 8n3, so at the threshold
the number of relators is roughly the number of generators raised to the 3/2 power.
But at the threshold for π1(Y ), the number of relators is roughly the number of
generators to the 5/4 power.
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Theorem 6.3 ([15]). If d < 1/3, then H is a.a.s. free. If d > 1/3, then H a.a.s.
has property (T ).

Kazhdan’s property (T ) is a condition usually stated in terms of unitary repre-
sentations. See [15] for a nice formulation of Property (T ) for discrete groups.

This second theorem of Żuk’s seems to be somewhat analogous to the Linial-
Meshulam threshold for homology. In both cases, the number of generators is
roughly equal to the number of relators. It might be reasonable to expect that
when p � n−1, π1(Y ) is a.a.s. free, and that when p � n−1, π1(Y ) a.a.s. has
property (T ), but at the present moment we do not know either of these as facts.

Similarly, it follows from property (T ) that the triangular random groups have
finite abelianizations when d > 1/3. One might expect that these abelianizations
are in fact trivial, but it seems that this is not known.

Similar comments should also hold for H1(Y,Z). If H1(X,Z/pZ) = 0 for every p,
then H1(X,Z) = 0 as well [7]. By the Linial-Meshulam-Wallach results ([10, 11]),
H1(Y,Z) is finite and has no p-torsion for any fixed p. So once p � 2 log n/n,
either H1(Y,Z) is trivial, or it is a finite generated abelian group with torsion
approaching infinity. The first scenario might seem more plausible, but as far as
we know, nothing is proved either way.

Finally, Friedgut and Kalai’s theorem on sharp thresholds [4] holds fairly gener-
ally and would seem to imply that there is a sharper threshold for simple connec-
tivity than what is shown here. It would be nice to know the location and “width”
of the threshold more precisely, and the behavior of π1(Y (n, p)) within the critical
window would be especially interesting to know. Itai Benjamani asks: if we think
of Y (n, p) as a stochastic process where the random triangles are added one at a
time, what can be said about the last nontrivial π1?
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Appendix 1. Connectivity of G(n, p) away from the threshold

Proof of Lemma 2.2. We show that if p = 3 logn+c
n , then the probability that

the graphs lkY (a) ∩ lkY (b) are connected for all pairs {a, b} is bounded below by
1−Ce−c with C independent of c. Since the probability that TY (a, b) is connected
for all a and b in [n] is increasing in p this is enough to prove that the condition
occurs a.a.s. These methods are typical in random graph theory; see for example
[1], Theorem 7.3.

If G is a graph with n− 2 vertices and with no connected components consisting
of k vertices, then G is connected.

For k between 1 and n, let Ek be the expected number of connected components
in TY (a, b) with k vertices. We will show that

∑

a,b

n/2�∑

k=1

Ek =

(
n

2

) n/2�∑

k=1

Ek ≤ Ce−c
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for some C < ∞. Thus by the union bound and the remark above, all TY (a, b) are
connected a.a.s.

For any set of vertices {a, b, u, v}, u is adjacent to v in TY (a, b) if and only
if {a, u, v} and {b, u, v} are both faces of Y , which happens with probability p2

by independence. So the probability that x is an isolated vertex in TY (a, b) is
(1− p2)n−3, and we have that

E1 = (n− 2)(1− p2)n−3

= (n− 2)

(
1− 3 log n+ c

n

)n−3

< C(n− 2)e−3 log n+c

< Ce−c/n2

< Ce−c

for some constant C < ∞.
The expected number of connected components in TY (a, b) of order 2 is

E2 <

(
n− 2

2

)
p2(1− p2)2(n−4)(16)

< n2

(
3 logn+ c

n

)2 (
1− 3 log n+ c

n

)2(n−4)

< Cn2e−2(3 log n+c)

< Ce−2c/n4

< Ce−c.

Similarly, since the number of spanning trees on a fixed set of k vertices is kk−2,

∑

a,b

n/2�∑

k=3

Ek ≤
(
n

2

) n/2�∑

k=3

Ek

≤
(
n

2

) n/2�∑

k=3

(
n− 2

k

)
kk−2p2(k−1)(1− p2)k(n−k−2)

≤
(
n2

2

) n/2�∑

k=3

nk

k!
kk−2p2(k−1)e−p2k(n−k−2)

≤
(
n2

2

) n/2�∑

k=3

k−5/2eknkp2(k−1)e−p2k(n−k−2)

≤
(
n3

2

) n/2�∑

k=3

k−5/2 exp

[
k + (k − 1) log 3 + (k − 1) log log n

−3k(n− k − 2) log n/n

]

≤
(
n3

2

) n/2�∑

k=3

k−5/2 exp[−7k log n/5]

≤ n−6/5

< Ce−c.
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For the second condition, note that for fixed a, b, d ∈ [n] we have that

P(abd �∈ F2(Y )) = 1− p.

For each d this is independent. So for a fixed a, b ∈ [n],

P( � ∃d : abd ∈ F2(Y )) = (1− p)n−2 = O(1− 1

n1/2
) = O(e−n1/2

).

Then the union bound shows that the second condition is satisfied a.a.s. �

Appendix 2. Local-to-global

In this appendix we prove a local-to-global theorem for linear isoperimetric in-
equalities. The statement and proof are similar in spirit to results already appearing
for groups (see [5, 13]), but we need the result for simplicial complexes, so we include
a proof here for the sake of completeness.

Throughout the section we fix ε ∈ (0, .25) and work with simplicial complexes
scaled so that edges have length ε and triangles have area ε2.

Theorem 6.4. If X is a simplicial complex with edge lengths ε and triangle areas
ε2 and there is an n ≥ 1 such that every loop γ with 1 ≤ Aγ ≤ 44 has Aγ < (Lγ

44 )
n,

then every contractible loop γ with 1 ≤ Aγ has Aγ < Lγ.

Theorem 3.9 follows easily from this result. The key concept that we will use in
the proof of Theorem 6.4 is that of a shortcut.

Definition 6.5. We define Ir to be the path of length r with F0(Cr) = [r] =
{1, . . . , r} ([0] = ∅) and

F1(Cr) =

r−1⋃

i=1

{
{i, i+ 1}

}
∪ {r, 1}.

Definition 6.6. Let F = (C
b−→ D

π−→ X) be a filling. A k-marking of F is

R = ([k]
x−→ C

b−→ D
π−→ X),

where [k]
x−→ C is a cyclically order-preserving map from [k] to F0(C) = [LC]. (This

simply means that there exists a ∈ [k] so that xi < xi+1 if i �= a and xk < x1 if
k �= a.) For each marked filling we define the covering by cyclically order-preserving
paths Ji : Ixi+1−xi

→ C from xi to xi+1 and Jk : Ix1−xk+LC → C from xk to x1.
Define paths bi = b(Ji) : I → D and γi = π(bi) : I → X.

Definition 6.7. A shortcut is a 2-marked filling

S = ([2]
x−→ C

b−→ D
π−→ X)

with
d
(
x1, x2

)
− d

(
bx1, bx2

)
≥ 1.

Fix a path B : Id(bx1,bx2) → D from bx1 to bx2.
We say that a shortcut is of type μ if

d
(
x1, x2

)
≥ μ and d

(
bx1, bx2

)
≤ μ− 1.

Note that every shortcut has at least one type.
We prove Theorem 6.4 by induction on the area of the filling.
Throughout the rest of this section we let α = 44 and μ = 13

2 . The first step is
to show that all shortcuts in a minimal counterexample are long.
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Lemma 6.8. Let

F = (C
b−→ D

π−→ X)

be a filling which is a minimal area counterexample to Theorem 6.4. Every shortcut
γ in F has length and area at least α.

Proof. Take ([2]
x−→ C

b−→ D
π−→ X) to be a shortcut in F . Then we have three paths

b1, b2, B from bx1 to bx2 and may assume that

LB + 1 < Lb1 ≤ Lb2.

Denote the cycles obtained by first traversing bi forward and the B backward by
Bi = bi ·B. Denote the induced cycles in X by γi = πBi. Note that Aγi = ABi.

First note that α < Aγ. Otherwise, as γ is a counterexample to Theorem 6.4
and Aγ < α,

Lγ ≤ Aγ <

(
Lγ

α

)n

.

So

α < α
n

n−1 < Lγ ≤ Aγ,

which is a contradiction.
Note that 1 ≤ Aγ1. Otherwise,

Aγ2 = Aγ −Aγ1 > α− 1 ≥ 1.

Since γ is a minimal area counterexample we must have that γi is not a counterex-
ample, so Aγi < Lγi. Hence by the definitions of the γi and of a shortcut,

1 > Aγ1 = Aγ −Aγ2 > Lγ − Lγ2 = LJ1 − LB = d(x1, x2)− d(bx1, bx2) ≥ 1,

a contradiction.
Finally, if Lγ1 ≤ α, then

1 ≤ Aγ1 < Lγ1 ≤ α

so that by the hypotheses of Theorem 6.4, 1 ≤ Aγ1 < (Lγ1

α )n and α < Lγ1, a
contradiction. �

Definition 6.9. A rectangle of type (u1, u2) is a 4-marked filling R with

d(bi, bi+2) ≥ u(i)

for both i = 1, 2. Write A(R) = A(D) for the area.

Definition 6.10. The ball B(r, A) of radius r about A ⊆ X (a metric space) is
all points with distance to A at most r.

Definition 6.11. If R is a rectangle with type uj > r, then the r-neighborhood
of the i = j (or i = j + 2) edge of R is the subrectangle

Nr,i(R) =

(
[4]

x′
−→ C ′ b′−→ D′ π|D′−−−→ X

)
.

Take y1, y2 ∈ b−1B(r, Im(bi)) maximizing the length t of the path a : It → C
from y1 to y2 containing Im(Ji) but not intersecting Im(Ji±2). Take x′

i = xi,
x′
i+1 = xi+1, x

′
i±2 = y1 and x′

i+1±2 = y2. Take z : Is → D to be the 1-immersed
path from by2 to by1 with interior avoiding Im(b) along the boundary (interior) of
B(r, Im(bi)). Take b′ = a · z : C ′ = Ct+s → D′ ⊆ D.
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Lemma 6.12. If R is a rectangle of type (r + s, v), then Nr,1(R) is of type (r, v)
and has interior disjoint from Ns,3(R).

Proof. If there is a point in Nr,1(R)◦ ∩Ns,3(R)◦, then there is a path from Im(b1)
to Im(b3) of length less than r + s. �

Lemma 6.13. If R is a rectangle of type u, then A(R) ≥ 2u(1)u(2).

Proof. Since any type (ε, ε) rectangle has at least 2 triangles, an easy induction
using Lemma 6.12 now shows that any type (u(1), u(2)) rectangle has area at least
2u(1)u(2). �

Lemma 6.14. Let

F = (C
b−→ D

π−→ X)

be a minimal filling which is a minimal area counterexample to Theorem 6.4. Then
there exists a filling

F ′ = (C ′ b′−→ D′ π|D′−−−→ X)

with Aγ ≥ Aγ′ > α and Aγ′ > 1.15Lγ′.

Proof. In the proof we perform the following steps.
Define the filling F ′ and a marking r. Write μ ≤ mε < μ+ ε.
We do this in two cases. First if F has no type μ shortcut, then our filling F ′ = F .

Define a 2t-marking with ri = 1 +m(i− 1) and t maximal with LC ≥ 2tmε.
If F does have a type μ shortcut, then choose one from x1 to x2 such that LJ1

is minimal (and among those, choose one with AB1 minimal). Our filling F ′ will
have b′ = b1 · b3.

Now we define a (2t)-marking of F ′ by ri = x1 +mi ∈ Im(J1), taking t maximal
so that mε(2t+1) ≤ LJ1. Note that all of the paths bi for i = 1, . . . , 2t− 1 for this
marked filling have image in that of b1 for the marked filling x. Note that in both
cases,

t >
LJ1 − (μ− 1)− 2(μ+ ε)

2(μ+ ε)
.

Define the rectangles Ri.
For any i < j ∈ [t] consider the type (u1 = μ − 1, u2 = μ − 1) rectangle Ri,j

marking F ′ by y1 = ri, y2 = ri+1, y3 = rj and y4 = rj+1. The type follows from
the minimality of the shortcut and Lemma 6.12. Define Ri = Nμ−1

2 ,1(R2i,2j) =

Nμ−1
2 ,3(R2k,2i) = Nμ−1

2 ,2(Ri−1,i+1). By Lemma 6.12, Ri has type u1 = μ−1
2 , u2 = μ

and has interior disjoint from Rj .

A(Ri) > (μ− 1)
2
for each i.

By Lemma 6.13 and the last step we have that

A(Ri) ≥ 2

(
μ− 1

2

)
(μ− 1) ≥ (μ− 1)

2
.
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Finally we compute the area of b.
Recalling that μ = 6.5, Lb′ > 44 and ε < .1, we have that (μ− 1)2 = 30.25 and

Ab′ ≥
t∑

i=1

A(Ri) ≥ t(μ− 1)2

≥
(
Lb′ − 3μ− 2ε+ 1

2(μ+ ε)

)
(μ− 1)2 ≥ 30.25Lb− 575

14
> 2.15Lb′ − 44 > 1.15LB′.

�

Proof of Theorem 6.4. Assume not. Fix a counterexample γ : C → X with
1 ≤ Lγ ≤ Aγ such that Aγ is minimal as well as a minimal filling

F = (C
b−→ D

π−→ X)

of γ.
By Lemma 6.14 we have that Aγ > 1.25Lγ. We construct a smaller counterex-

ample. Simply alter D by removing one 2-face touching the boundary of D and
make the corresponding changes to the rest of the filling. This increases the length
of the curve by at most ε < .25 and decreases its area by at most ε2 < .0625. It
is easy to check that this is still a counterexample. As γ was minimal, this is a
contradiction. �
Proof of Theorem 3.9. Rescale X so that edges have length 44

ρ and triangles

have area ( 44ρ )2 and apply Theorem 6.4 with n = 1. �
Theorem 6.4 is closely related to the gap between quadratic and linear growth,

as discussed for instance in [2]. In fact this gap follows from Theorem 6.4 with
n = 2.
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