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1 Introduction
We study the infinite graph whose vertices correspond to points in d-
dimensional Euclidean space and where two vertices p,q are consid-
ered adjacent p∼ q if d(p,q) = 1. We denote this graph by Rd .

Recall that the chromatic number χ(G) of a graph G is the smallest
number of colors needed for a proper coloring, i.e. the smallest k so
that there exists a function f : V (G)→{1,2, . . . ,k} such that whenever
p∼ q, we have f (p) 6= f (q).

Determining the chromatic number of the plane χ
(
R2) is a well

known problem in combinatorics. For several decades the bounds have
held fast at

4≤ χ
(
R2)≤ 7.

See Soifer’s “The mathematical coloring book” [7] for an encyclopedic
overview of this problem and its history.

The problem has also been studied in higher dimensions. See [7]
and Kupavskii–Raigorodskii’s paper [4]. With the aid of extensive cal-
culations in the free and open-source software Sage [8], we obtain new
lower bounds for χ(Rd) in dimensions d = 8 . . .12. We verified all of
the computations in Maple 17.



Our main result is the following.

Theorem 1.1. We have that χ
(
R8)≥ 19, χ

(
R9)≥ 21, χ

(
R10)≥ 26,

χ
(
R11)≥ 32, and χ

(
R12)≥ 32.

As far as we are aware, the best previously published lower bounds
were, respectively:
χ
(
R8) ≥ 16 by Larman and Rogers in 1972 [5], and χ

(
R9) ≥ 21,

χ
(
R10)≥ 23, χ

(
R11)≥ 23, and χ

(
R12)≥ 25 by Kupavskii and Raig-

orodskii in 2009 [4].

The rest of the paper is organized as follows. We prove the bounds
χ
(
R10)≥ 26, χ

(
R11)≥ 32, and χ

(
R12)≥ 32 in Section 2; the bound

χ
(
R9)≥ 21 in Section 3; and the bound χ

(
R8)≥ 19 in Section 4.

Acknowledgements. We thank the Ohio Supercomputer Center for
computing resources and technical support. This work was sponsored
in part by the first author’s Sloan Research Fellowship. We thank Chris
Peterson for helpful and inspiring conversations, and in particular for
pointing out that the 8-dimensional Gosset polytope already gives the
lower bound χ

(
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2 Hypercube graphs
Graphs constructed on vertices of the d-dimensional cube {0,1}d pro-
vide important examples in geometric graph theory. Frankl and Wil-
son’s proof that

χ

(
Rd

)
≥ exp(Cd)

for some constant C > 0, for example, uses such graphs [2]. See also
Kahn and Kalai’s subsequent counterexample to Borsuk’s conjecture
[3].

Define the hypercube graph C(d,u) to have vertices V = {0,1}d ,
with two vertices adjacent if their Hamming distance is u. Note that
Hamming distance u corresponds to Euclidean distance

√
u. So by di-

lating Euclidean space by a factor of 1/
√

u, we see that C(d,u) is a
unit-distance graph in Rd .

For d odd C(d,u) is bipartite, so for our purposes these are not very
interesting. For d even C(d,u) has two isomorphic connected compo-
nents — we denote one of these “half-cube” connected components on



2d−1 vertices by H(d,u). In general we have that

χ(Rd)≥ χ(C(d,u)) = χ(H(d,u)).

For example C(5,2) is a graph on 32 vertices, regular of degree 10,
and the half-cube H(5,2) is a graph on 16 vertices.

Recall that for a graph G with |V (G)| vertices and independence
number α(G), we have that

χ(G)≥ |V (G)|
α(G)

.

One checks that the independence number α(H(5,2)) = 2. Then
the independence-number bound gives that χ(H) ≥ 8, and since H is
a unit-distance graph in R5, this also gives that χ(R5) ≥ 8. This half-
cube example is well known; see for example [5].

In Figure 1 we summarize our results on chromatic numbers of hy-
percube graphs for small d and u. In some cases we were able to com-
pute χ(C(d,u)) exactly. In some other cases we were not, but we were
still able to compute the independence number α(C(d,u)), giving a
lower bound.

We obtain new lower bounds on χ(Rd) for d = 10 and d = 11
this way, in both cases with Hamming distance u = 4. According to
a calculation in Sage, the halfcube H(10,4) has independence number
α(H(10,4)) = 20. There are 512 vertices, so then

χ (H(10,4))≥ 512
20

= 25.6,

and since the chromatic number is an integer,

χ
(
R10)≥ 26.

According to another calculation in Sage, the half-cube H(11,4)
has independence number α(H(10,4)) = 32. There are 1024 vertices,
and then we have

χ
(
R11)≥ 1024

32
= 32.

This last example also gives a new record lower bound χ(R12)≥ 32.
Since Hamming distance 4 corresponds to Euclidean distance 2,

these graphs still have rational coordinates when rescaled to unit-distance
graphs.



d

u

2 3 4 5 6 7 8 9 10 11

2

4

6

2 4 4 8 8 8 8 ≥ 13 ≥ 13 ≥ 13

1 1 2 4 7 8 8 ≥ 15 ≥ 26 ≥ 32

1 1 1 1 2 4 ≥ 5 ≥ 7 ≥ 11 ≥ 16

Figure 1: Chromatic numbers of some hypercube graphs χ(C(d,u)) for
some small d and u. We restrict to u even, since C(d,u) is bipartite for
u odd. In some cases we compute chromatic number exactly, and have
an independence-number lower bound. For (d,u) = (10,2) and (11,2)
the lower bound is by monotonicity of rows.

3 Hyperplane slices of hypercube graphs
Let C(d,u,s) denote the intersection of C(d,u) with the hyperplane at
height s

x1 + · · ·+ xd = s.

Clearly, C(d,u,s) is a unit distance graph in Rd−1, so

χ

(
Rd−1

)
≥ χ (C(d,u,s)) .

For example, C(10,4) has 210 = 1024 vertices and is regular of de-
gree

(10
4

)
, where the subgraph C(10,4,5) has

(10
5

)
= 252 vertices and is

regular of degree 100.
We found with a computation in Sage that

α (C(10,4,5)) = 12,

so
χ
(
R9)≥ 252

12
= 21.

This gives an alternate proof for the currently best known bound of
Kupavskii and Raigorodskii [4].



4 A unit-distance graph in R8

Let G0 be a graph whose vertices are the 240 shortest vectors in the E8
lattice. These may also be described as the vertices of an 8-dimensional
Gosset polytope.

Concretely, there are 112 vertices with integer entries obtained from
arbitrary permutations of the vectors

(±2,±2,0,0,0,0,0,0),

and 128 vertices with integer entries obtained from all vectors

(±1,±1,±1,±1,±1,±1,±1,±1)

with an even number of minus signs.
Adjacency is with respect to Euclidean distance 4. So for example,

(2,2,0,0,0,0,0,0) is adjacent to (0,0,2,2,0,0,0,0).
The graph G0 lives on a 7-dimensional sphere of radius 2

√
2. A pair

of vertices on this sphere is adjacent if and only if the corresponding
vectors are orthogonal.

Now define P to be the set of integer points within distance 4 of the
origin.

Our algorithm is as follows.

1. Initialize G0 as above.
2. Choose a vertex x ∈ P outside of the current graph Gi.
3. If the independence number remains unchanged on adding vertex

x to the graph Gi then add X , i.e. if α(Gi + x) = α(Gi), then set
V (Gi+1) :=V (Gi)+ x.

4. If there are any more points in P outside of the graph V (Gi) , go
to step (2).

After experimentation, we found that at least 49 points (Figure 2)
could be added without increasing the independence number, which
then gives a unit-distance graph G with

χ(G)≥ 289
16

= 18.0625,



• (-2, 0, -2, 0, 0, 2, 0, 2)
• (-2, 0, 0, 0, 2, 0, -2, 2)
• (-2, 0, 0, 2, 2, 2, 0, 0)
• (-2, 0, 2, 0, 0, 2, 0, 2)
• (-2, 0, 2, 2, 0, 0, 0, 2)
• (-2, 2, 0, 0, -2, 2, 0, 0)
• (-2, 2, 0, 0, 0, 0, 2, 2)
• (-2, 2, 2, 0, 2, 0, 0, 0)
• (0, -2, -2, 0, 0, 2, 0, 2)
• (0, -2, -2, 0, 2, 0, 0, 2)
• (0, -2, 0, 2, 2, 0, 0, 2)
• (0, 0, -2, 0, 2, 0, -2, 2)
• (0, 0, -2, 0, 2, 2, 2, 0)
• (0, 0, -2, 2, 2, 0, 2, 0)
• (0, 0, -1, 1, -1, 0, 0, 1)
• (0, 0, 0, 2, 0, 2, 2, 2)
• (0, 0, 0, 2, 2, 0, -2, 2)
• (0, 0, 2, 0, -2, 0, 2, 2)
• (0, 0, 2, 0, 2, -2, -2, 0)
• (0, 0, 2, 2, 2, 0, 2, 0)
• (0, 2, 0, 0, -2, -2, 0, 2)
• (0, 2, 0, 0, 2, 0, -2, -2)
• (0, 2, 0, 2, 0, 2, 0, -2)
• (0, 2, 0, 2, 2, 2, 0, 0)
• (1, -1, 1, -1, 1, 1, -1, 3)

• (1, 0, 0, 1, 1, 1, 0, 0)
• (1, 0, 1, 0, 1, 1, 0, 0)
• (1, 1, 0, 1, 1, 0, 0, 0)
• (1, 1, 1, 0, 0, 0, 0, 1)
• (1, 1, 1, 1, 0, 0, 0, 0)
• (2, -2, -2, 0, 0, 0, 2, 0)
• (2, -2, -2, 0, 0, 2, 0, 0)
• (2, -2, 0, -2, 0, 0, 2, 0)
• (2, -2, 0, 0, -2, 0, 0, 2)
• (2, -2, 0, 0, 2, 0, -2, 0)
• (2, 0, 0, 0, 0, -2, 2, -2)
• (2, 0, 0, 0, 0, 2, 2, -2)
• (2, 0, 0, 0, 2, -2, 0, -2)
• (2, 0, 0, 0, 2, 2, 0, -2)
• (2, 0, 0, 0, 2, 2, 2, 0)
• (2, 0, 0, 2, 0, -2, 2, 0)
• (2, 0, 0, 2, 2, 0, 0, -2)
• (2, 0, 0, 2, 2, 0, 0, 2)
• (2, 0, 2, -2, -2, 0, 0, 0)
• (2, 0, 2, 0, 0, 0, 2, -2)
• (2, 0, 2, 2, 0, 0, 0, 2)
• (2, 2, 0, 0, 0, 0, 2, 2)
• (3, -1, 1, -1, 1, -1, 1, 1)
• (3, -1, 1, 1, -1, -1, -1, -1)

Figure 2: List of 49 additional points added to the vertices of the 8-
dimensional Gosset polytope to obtain a unit-distance graph with chro-
matic number at least 19.



so χ(R8) ≥ 19. Our graph G can be rescaled to have rational co-
ordinates and unit distance, so this also gives the new lower bound
χ(Q8)≥ 19.

Mann used extensive computer-aided calculations to hunt for unit-
distance graphs with large chromatic number in 2003 [6] — he estab-
lished the lower bounds χ(Q6)≥ 10, χ(Q7)≥ 13, and χ(Q8)≥ 16.

Cibulka studied similar constructions in [1]. He also added points to
Gosset polytopes one at a time, and used computer-aided calculations
to establish the bounds χ(Q5)≥ 8 and χ(Q7)≥ 15.

Unit-distance graphs built on Gosset polytopes go back at least to
the landmark paper of Larman and Rogers in 1972 [5]. They in turn
thanked McMullen for suggesting the idea. Larman and Rogers exhib-
ited a configuration of 64 points, a “spindle” over the 7-dimensional
Gosset polytope, to establish the previous record lower bound

χ(R8)≥ 16.
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