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1 Polyominoes

Polyominoes, first studied systematically by Golomb [2], are shapes that can be
made by gluing together finitely many unit squares, edge to edge. A polyomino
with n squares is sometimes called an n-omino.

Tiling problems involving polyominoes are well studied—see, for example,
[3] or [5]. In tiling problems, one almost always restricts to simply-connected
polyominoes, i.e., polyominoes without holes. Our main interest here is maxi-
mizing the number of holes. Figure 1 illustrates an 8-omino, a 20-omino, and a
60-omino with 1, 5, and 21 holes respectively.

To be precise about the topology, we consider the tiles to be closed unit
squares in the plane. Polyominoes are finite unions of these closed squares,
so they are compact. The holes of a polyomino are defined to be the bounded
connected components of its complement in the plane.

Figure 1: Polyominoes with holes.



m 1 2 3 4 5 6 7 8
g(m) 7 11 14 17 19 23 25 28

Table 1: The precise values of g(m) were previously only known for m≤ 8. We
are able to find g(m) for infinitely many value of m. Corollary 1.2 implies, for
example, that g(21) = 59 and g(85) = 203.

1.1 Counting Holes

We consider two n-ominoes to be equivalent if they agree after a translation. We
denote the set of all n-ominoes by An. Given a polyomino A, we denote by h(A)
the number of holes in A. For n≥ 1 define,

f (n) := max
A∈An

h(A). (1)

Other notions of polyomino equivalence have been studied, especially in
the context of polyomino enumeration. For example, one might consider two
polyominoes to be the same if they agree after rotation or reflection. However,
the number of holes is invariant under rigid motions, so for our purposes, all
that matters is that An is a finite set so the maximum f (n) is well defined. This
maximum is the same under any of these notions of equivalence.

Similarly, define g(m) to be the minimum number N such that there exists
an N-omino with m holes. We check below that g is a right inverse of f .

The function g is listed at The On-Line Encyclopedia Of Integer Sequence
as sequence A118797. Tomás Oliveira e Silva enumerated free polyominoes
according to area and number of holes, up to n = 28, which at the time of this
writing seems to be the state of the art. As a corollary of his calculations, we
know f (n) for n≤ 28 and g(m) for m≤ 8. [1]. See Table 1.

1.2 Statement of main results

Here and throughout,

nk =
1
3

(
22k+1 +3 ·2k+1 +4

)
, (2)

and
hk =

1
3

(
22k−1

)
. (3)

Theorem 1.1. For k ≥ 1 we have f (nk) = hk. Moreover, f (nk− 1) = hk and
f (nk−2) = hk−1.



Corollary 1.2. g(hk) = nk−1 for all k ≥ 1.

We also give bounds for large n.

Theorem 1.3. Let f (n) denote the maximum number of holes that a polyomino
with n squares can have. Given C1 >

√
5/2 and C2 <

√
3/2, there exists an

n0 = n0(C1,C2) such that

1
2

n−C1
√

n≤ f (n)≤ 1
2

n−C2
√

n,

for n > n0.

Theorem 1.1 implies that the constant
√

3/2 in Theorem 1.3 can not be
improved.

2 Preliminary Results

It is clearly always possible to attach a square tile to an n-omino and obtain
an (n+ 1)-omino with at least the same number of holes. This implies that
f (n)≤ f (n+1) for evey n≥ 1, so f is monotonically increasing. The following
lemma tells us that f never increases by more than one.

Lemma 2.1. For every n≥ 1,

f (n+1)− f (n)≤ 1.

Proof. We will show that if A is any (n+1)-omino, then there exists an n-omino
B such that h(B)≥ h(A)−1.

Let A be an (n+ 1)-omino, and k be the number of tiles in the bottom row
of A, and denote by l the leftmost tile in this row.

If k = 1, then l is only connected to one other tile, so we can delete l without
disconnecting A or destroying any holes.

Now suppose the statement holds whenever k = 1,2, . . . ,m. Then let k =
m+ 1 and denote by l1, l2, and l3 the tile sites that share boundary with l that
are to the up and right to l. Each of the tile sites l1, l2, and l3 could either be
occupied by tiles in A or not. The six possibilities are depicted in Figure 2. Any
other combination would result in A having disconnected interior.

If A is such that the local tile structure around l coincides with C1, C2, C3,
C5, or C6, then it is already possible to delete l from A to generate an n-omino B
such that h(B)≥ h(A)−1.

However, if C4 is the local structure around l, then it is possible that deleting
l disconnects A. In this case, we delete l and then add a new tile at the empty
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Figure 2: The tile l denotes the leftmost tile in the bottom row of a polyomino A.
If the tile sites l1, l2, or l3 are in A, they are dark gray colored, otherwise they are
colored with the lightest gray. C1-C6 are the six possible combinations for these
tile sites. All other possibilities are rejected because they give a square structure
with a non connected interior and we are supposing that A is a polyomino.

tile site l2. This yields a new polyomino A′ with the same number of tiles. If the
addition of this new tile causes the coverage of a hole, then h(A′) = h(A)− 1,
and C1 or C3 must then be the new local structure around the leftmost tile of
the bottom row of A′. This then allows us to terminate the process by deleting
the bottom leftmost tile from A′ without destroying more holes. If we have
not destroyed any holes, then we have an (n+ 1)-omino A′ with h(A) = h(A′)
and with k = m tiles in the bottom row. Hence, we can apply the induction
hypothesis and the desired result follows. �

Lemma 2.2. For every m≥ 1, we have that f (g(m)) = m. Also, g(m) = n if and
only if f (n) = m and f (n−1) = m−1.

Proof. By the definitions of f and g, we have immediately that f (g(m)) ≥ m.
Suppose by way of contradiction that for some m we have f (g(m)) ≥ m+ 1.
By Lemma 2.1, f (g(m)− 1) ≥ m. This implies that there exists a polyomino
with g(m)−1 tiles and at least m holes, but this contradicts the definition of g.
We then conclude that f (g(m)) = m for every m. It follows immediately that
g(m) = n if and only if f (n) = m and f (n−1) = m−1. �

3 An Upper Bound

3.1 Perimeter.

Define the perimeter p(A) of a polyomino A ∈ An as the number of edges in
the topological boundary of A. That is, p(A) counts the number of edges with a
square in A on one side, and a square not in A on the other side. For example,
the 8-omino in Figure 1 has a perimeter equal to 16.

For n≥ 1 we denote pmin(n) and pmax(n) as the minimum perimeter and the
maximum perimeter possible for a polyomino with an area of n.



In 1976, F. Harary and H. Harborth [4] proved that the minimum perimeter
possible in an n-omino is given by,

pmin(n) = 2d2
√

ne. (4)

Figure 3: Polyominoes that achieve the minimum perimeter.

Let A ∈ An, then the number of edges that are on the boundary of two
squares of A will be denoted by b(A), in which case the edges are contained
in the interior of the polyomino. Observe that all the edges of the squares of
a polyomino either belong to the perimeter or to the interior of the polyomino.
This means that,

4n = p(A)+2b(A). (5)

For example, if A is any 7-omino depicted in Figure 4, then b(A) = n−1= 6
and p(A) = 4n−2(n−1) = 16.

Let bmin(n) be the minimum number of edges shared by two squares that an
n-omino can have. It is possible to associate a dual graph with any polyomino by
considering each square as a vertex and by connecting any two of these vertices
if they share an edge.

Figure 4: Polyominoes that achieve the maximum perimeter.

Let A be an n-omino. Because any polyomino has to have a connected
interior, then the associated dual graph of A is connected and there exists a
spanning tree of this graph. If the dual graph has n vertices, then there are at
least n−1 edges in the spanning tree. This implies that there are at least n−1
different common edges in A. That is, b(A) ≥ n− 1, and this is true for any
n-omino. This then gives us that bmin(n)≥ n−1. Observing that the n-omino C
with only one column has b(C) = n−1, we conclude that bmin(n) = n−1.

As a consequence of this and equality (5), for every n≥ 1,

pmax(n)≤ 4n−2bmin(n) = 4n−2(n−1) = 2n+2, (6)



and equality is only achieved by polyominoes with the number of common
edges equal to bmin(n).

We need to distinguish when an edge that is on the perimeter of a polyomino
A ∈An is an edge that forms part of a hole in the polyomino. Define such edges
as being part of the hole perimeter. We represent by ph(A) the number of edges
on the hole perimeter of A. We define the outer perimeter of A, denoted by
po(A), as the difference between the perimeter p(A) and the hole perimeter,

po(A) = p(A)− ph(A).

If a polyomino A is simply connected, then p(A) = po(A). In general,
p(A) = po(A)+ ph(A) by definition.

Polyominoes with holes might achieve the maximum perimeter. However,
the next lemma checks the intuitive fact that the minimum perimeter cannot be
achieved by polyominoes with holes.

Lemma 3.1. If A ∈An and A has at least one hole, then pmin(n)< p(A).

Proof. By (4), an n-omino with k holes, with k > 1, has an outer perimeter at
least equal to pmin(k+n). A polyomino with k holes has a hole perimeter greater
or equal to 4k. Then, we have,

p(A) = po(A)+ ph(A)≥ pmin(n+ k)+4k. (7)

Because the function h(x) = 2d2
√

xe is a non-decreasing function, we can con-
clude from (7) that,

p(A)≥ pmin(n+ k)+4k > pmin(n)+4k.

�

We denote this minimum outer perimeter over all polyominoes with n tiles
and m holes (whenever such polyominoes exist) by pout

min(n,m). Note that we
always have,

pmin(n+m)≤ pout
min(n,m), (8)

by definition.

3.2 Main upper bound

We prove in the next lemma a general result which allows us to generate an
upper bound of f from any lower bound. We will apply this lemma again in
Sections 4 and 5.



Lemma 3.2. Let n be any natural number. If f (n) denotes the maximum number
of holes that an element of An can have, then,

f (n)≤ 4n−2bmin(n)− pmin(n+ f (n))
4

. (9)

Proof. Let A be an element in An and let h(A) denote the number of holes in A.
Then,

ph(A) = 4n−2b(A)− po(A)≤ 4n−2bmin(n)− po(A). (10)

By (8) we have,

po(A)≥ pout
min(n,h(A))≥ pmin(n+h(A)). (11)

From inequalities (10) and (11) we get,

ph(A)≤ 4n−2bmin(n)− pmin(n+h(A)). (12)

Then, if A is a polyomino that has f (n) holes, we get,

f (n)≤ ph(A)
4
≤ 4n−2bmin(n)− pmin(n+ f (n))

4
,

which establishes inequality (9). �

As a corollary for Lemma 3.2, from any lower bound of f , we get the fol-
lowing upper bound for f ,

Corollary 3.3. If lb f (n)≤ f (n), then

f (n)≤ 1
2

n− 1
2

⌈
2
√

n+ lb f (n)
⌉
+

1
2
, (13)

Proof. Let lb f (n)≤ f (n) for a natural number n, then pmin(n+lb f (n))≤ pmin(n+
f (n)), by monotonicity. This inequality allow us to obtain (13) by substituting
pmin(n+ f (n)) with pmin(n+ lb f (n)) in (9). �

4 Polyominoes that attain the maximum number of holes

4.1 Construction of the main sequence

We are going to describe below how to construct a sequence {Sk}∞
k=1 of poly-

ominoes with nk squares and h(Sk) = hk holes. Remember that nk and hk were
defined in (2) and (3) respectively.

The first three elements, S1, S2, and S3 of the sequence were shown in Figure
1.

To generate the rest of the sequence for n ≥ 2, we follow the next general
recursion process:



• First, place a rotation point in the center of the top right tile of Sn−1.

• Then, rotate Sn−1 with respect to this point ninety degrees four times cre-
ating four, overlapping copies.

• Finally, remove the tile containing the rotation point.

Figure 5: Generating Sn+1 from Sn (L to R). (1) The polyomino S3, (2) four
overlapping rotated copies of S3, and (3) the polyomino S4 made by removing
the tile of rotation.

4.2 Properties of the sequence Sk and proof of Theorem 1.1

From this construction, we observe that for k≥ 1 we have the recursion h(Sk) =
4h(Sk−1) + 1. The factor of four is due to the four reflected copies of Sk−1
generated in the process of constructing Sk. The one hole added is generated by
the square removed after the rotation process. Then, because h(S1) = 1, we get
h(Sk) = hk for all k ≥ 1.

Let sk be the number of tiles in Sk for k ≥ 1. The sequence sk satisfies the
recursion,

sk+1 = 4sk−4(2k +1),

because the polyominoes Sk have side lengths of 2k + 1 tiles and, in the rota-
tion process, 4(2k +1) tiles overlap. Additionally, the sequence nk satisfies the
relationship,

nk+1 = 4nk−4(2k +1).

Then, because both nk and sk satisfy the same recursion relationship and are
equal in the first element (s1 = 8, n1 = 8), we can conclude that nk and sk are
the same sequences.

We have proved the following lemma.



Lemma 4.1. There exists a sequence of polyominoes {Sk}∞
k=1, such that Sk has

nk tiles and hk holes.

Proof of Theorem 1.1. First we show that f (nk) = hk. From Lemma 4.1 we
know,

hk ≤ f (nk). (14)

Substituting this lower bound in (13) we have,

f (nk)≤
1
2

nk−
1
2

⌈
2
√

nk +hk

⌉
+

1
2
. (15)

From the easily verified identity,

hk +
1
2
=

1
2

nk−
1
2

⌈
2
√

nk +hk

⌉
+

1
2
,

and inequalities (15) and (14), we get,

hk ≤ f (nk)≤ hk +
1
2
. (16)

This implies that,
f (nk) = hk, (17)

because f (nk) and hk are integers.
Now, we prove that f (nk−1) = hk. By removing the upper leftmost square

from each Sk, it is possible to generate a sequence of polyominoes {Ak}∞
k=1 with

nk − 1 tiles each Ak, such that h(Ak) = hk. This implies that hk ≤ f (nk − 1).
Then, because f (nk−1)≤ f (nk) and f (nk) = hk, we can conclude that,

f (nk−1) = hk.

Finally, we prove that f (nk−2) = hk−1. Because f (nk−1) = hk and f is
a non decreasing function, it is forced that f (nk−2)≤ hk. If we assume by way
of contradiction that f (nk−2) = hk, then, using (13) it must be the case that,

hk = f (nk−2)≤ 1
2
(nk−2)− 1

2

⌈
2
√
(nk−2)+hk

⌉
+

1
2
. (18)

Substituting (2) and (3) in this inequality leads to a contradiction. Then f (nk−
2)< hk; and, from this inequality and Lemma 2.1, we can conclude that,

f (nk−2) = hk−1. (19)

�



5 General bounds

In this section we prove Theorem 1.3. We first prove the lower bound. We
construct a sequence of polyominoes {Rk}∞

k=1 of polyominoes with mk = 40k2+
20k tiles and tk = 20k2 holes, as follows.

We first place 10k2 copies of the pattern S (in Figure 6) into a rectangle 6k
high and 10k long. We add a top row of 10k tiles, and a leftmost column of
6k−1 tiles. Finally, we attach 2k vertically aligned dominoes (for a total of 4k
tiles) to the rightmost column. The polyomino R2 is depicted in Figure 7, and
the 40k2 tiles just described are colored with the lightest gray in this figure. The
initial, repeated pattern S is bordered in black within R2.

Next “we fill in the gaps” between these constructions to a family of poly-
ominoes {Rk,l} with mk,l = 40k2 + 20k+ l tiles and tk,l = 20k2 + bl/2c holes,
defined whenever

0≤ l ≤
2k−1

∑
i=1

2i = 2k(2k−1).

The polyomino Rk,l is constructed from Rk by adding tiles along the right side,
continuing the domino pattern, as in Figure 8. Every two tiles added creates one
hole.

Note that mk+1−mk = 80k+60, and

80k+60≤ 2k(2k−1)

for k ≥ 42. We define a sequence of polyominoes {R′n} for all n ≥ m42, as
follows. Let k be the largest number such that mk ≤ n, let l = n−mk, and then
define R′n = Rk,l .

Now we check that if C1 >
√

5/2, then f (n) ≥ n/2−C1
√

n for all large
enough n.

The polyomino R′n = Rk,l has mk,l tiles and tk,l holes. Since k and l are
nonnegative, we have

(5/2)
(
40k2 +20k+ l

)
= 100k2 +50k+(5/2)l ≥ 100k2 +20k+1. (20)

Taking square roots of both sides gives√
5/2
√

40k2 +20k+ l ≥ 10k+1. (21)

Since C1 >
√

5/2, this gives

C1

√
40k2 +20k+ l ≥ 10k+1. (22)



Then

20k2 +

⌊
l
2

⌋
≥ 1

2
(
40k2 +20k+ l

)
−C1

√
40k2 +20k+ l. (23)

Inequality (23) was obtained from (22) by adding 20k2 to both sides, adding
the inequality

⌊ l
2

⌋
≥ l

2 −1, and rearranging terms.
By considering the sequence R′n, we have

f (n)≥ n
2
−C1
√

n (24)

for all large enough n, as desired.
Combining inequality (24) with Corollary 3.3, we get an upper bound that

allows us to complete the proof of Theorem 1.3. Indeed, we have

f (n)≤ 1
2

n− 1
2

⌈
2
√

n+
n
2
−C1
√

n
⌉
+

1
2

(25)

≤ 1
2

n−
√

3n
2
−C1
√

n+1 (26)

≤ 1
2

n−C2
√

n, (27)

for C2 <
√

3/2 and large enough n.

Figure 6: The pattern S consists of 4 tiles and 2 holes.

Figure 7: The polyomino R2 has 200 tiles and 80 holes.



Figure 8: R3 has 420 tiles and 180 holes. Adding tiles in a domino pattern on
the right side yields R3,24, which has 444 tiles and 192 holes.

6 Concluding remarks

Theorem 1.1 makes us guess that the upper bound in Theorem 1.3 is correct,
and that the lower bound might be improved to the following.

Conjecture 6.1. For every C1 >
√

3/2 there exists an n0 = n0(C1) such that

f (n)≥ 1
2

n−C1
√

n.

for all n≥ n0.

It might even be possible to find an exact formula for f . The sequence of
polyominoes {Sk} shows that

f (n) =
1
2

n−
√

3
2

n+
1
4
+

1
2
,

infinitely often. We were not able, however, to modify this with “rounding”
functions to produce a formula which feasibly works for all n.

The recursive construction suggests that the main sequence of polyominoes
{Sk} is approaching some limiting fractal shape. Elliot Paquette pointed out to
us that one way to make sense of this idea is to consider the “inner boundary”
of a polyomino Sn to be an immersed circle in R2. Appropriately rescaling
and reparameterizing, these circles seem to converge to a space-filling curve in
[0,1]2.



Figure 9: The inner boundary is an immersed circle.

We noticed also that one can derive an aperiodic tiling of the plane from
our main sequence, as follows. The ‘planar dual’ of a polyomino Sk is a planar
graph with one vertex for every tile and one bounded face for every hole—see
Figure 10. One can find a limiting infinite polyomino by centering every Sk at
the origin, and taking the union of all of them. The planar dual of this infinite
polyomino is an aperiodic tiling by squares, pentagons, and hexagons.
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