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Abstract
We study (n, k)-scatters, which are regular n-gon tiles arranged so that each tile
shares edges with at least k others. To measure how much freedom there is in
arranging scatters, we ask which shapes are unavoidable. It turns out that for a
few choices of (n, k) there are infinite unavoidable shapes, but otherwise they are
finite. We discuss the infinite case as an analogue of crystallization.

The main result here is that besides the trivial situations when there’s a unique
scatter, there are only four instances of this. Scatters crystallize nontrivially just
when (n, k) = (5, 3), (7, 3), (10, 4), or (14, 4).

1 Introduction
We use tiles to study a simple combinatorial analogue for crystallization. The game
we’re playing is to arrange regular n-gon tiles in the plane according only to the rule that
each tile has at least k neighbors. Any such arrangement will be called an (n, k)-scatter.
We emphasize that the number of neighbors doesn’t have to be on the nose but is only
bounded below. If there’s some infinite shape that always appears no matter how we
play the game, we say (n, k)-scatters crystallize.

For an example of why we choose this terminology, crystallization in nature often
occurs in media of high saturation or density. This is the case here in the sense that crys-
tallized scatters are always as dense as possible (as measured by k). It also seems likely
that crystallization implies zero entropy from the point of view of symbolic dynamics.
With additional assumptions we prove this after establishing the main result. Finally, in
the last section we give an example of crystallized scatters with 5-fold forbidden symme-
try. The physics analogy at least conveys much of our intuition for the subject, although
we don’t mean to suggest that this is a meaningful model of how crystals form in the
physical world.

2 Definitions
A tile in this article is a regular n-gon with unit length sides. A shape is a finite or infinite
set of tiles t0, t1, . . ., such that for every i > 1, ti has a common edge with at least one
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Figure 1: The smallest (3, 2)-, (6, 3)-, and (4, 2)-scatters.

Figure 2: A few of many possible periodic (4,3)-scatters.

tj with j < i, and with tiles only intersecting along their boundaries. We consider two
shapes indistinguishable if they’re congruent, so the order itself isn’t important but just
that the tiles are connected in this way.

An (n, k)-scatter is a shape satisfying the additional condition that each tile shares
edges with at least k others. (We’ll use n and k consistently throughout the paper.) A
few examples are illustrated in Figures 1 and 2.

A shape is (n, k)-unavoidable if a congruent copy appears at least once in every
(n, k)-scatter. If there exists any infinite (n, k)-unavoidable shape, we say (n, k)-scatters
crystallize.

3 Results
We ask first when scatters exist and fortunately there’s a simple answer. It’s easy to verify
that (n, 3)-scatters exist for all n and that (n, k)-scatters don’t ever exist for k > 6. It’s
also easy to check that (n, 6)-scatters exist if and only if 6|n, in which case there’s a
unique infinite scatter. (Similarly, there’s a unique scatter when (n, k) = (3, 3), (4, 4), or
(8, 4). See Figure 3.) So we need only check existence of (n, k)-scatters for k = 4 and
k = 5.

Lemma 3.1. (n, 4)-scatters exist if and only if 2|n. (n, 5)-scatters exist if and only if
6|n.

After existence we can turn to our main focus, crystallization. We’ll work first to
limit the possibilities for when it might occur. The next lemma should be consistent
with the reader’s intuition - the only chance for things crystallizing is when they’re as
dense as possible.
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Figure 3: The unique (8, 4)-,(6, 6)- and (12, 6)-scatters.

Lemma 3.2. If (n, k + 1)-scatters exist, then (n, k)-scatters don’t crystallize.

Then we need only construct a few explicit examples of each type to rule out crystal-
lizing for almost all other values of n.

Lemma 3.3. (n, 3)-scatters don’t crystallize for n ≥ 9, (n, 4)-scatters don’t crystallize
for n ≥ 16.

Finally, we exhibit unavoidable shapes for each of the choices of parameter we haven’t
already eliminated and establish the main result.

Theorem 3.4. Aside from the trivial cases when there’s a unique scatter, there are four
more which crystallize, when (n, k) = (5, 3), (7, 3), (10, 4), and (14, 4).

In the next three sections we prove these results. Then we briefly discuss entropy,
and finally we close with open questions.

4 Existence and nonexistence of (n, 4)- and (n, 5)-scatters
Existence is straightforward since we need only construct examples. Whenever n is even,
(n, 4)-scatters exist by the kind of constructions in Figure 5. When 6|n, (n, 6)-scatters
exist, which are also (n, 5)-scatters. So all we have to check is that otherwise (n, 4)-
scatters and (n, 5)-scatters don’t exist.

It’s convenient here to use the language of graph theory. For any (n, k)-scatter X,
define the dual graph of X, GX , to be the graph whose vertices are tiles in X with two
vertices adjacent if the corresponding tiles share an edge in X. So k is a lower bound on
minimum vertex degree in GX .

Recall that the girth of a graph is the length of its shortest cycle. We claim if n
is odd then for every (n, k)-scatter X, GX has girth at least 6. First observe that GX

is bipartite, since two adjacent vertices correspond to tiles where one is rotated π with
respect to the other. This rules out odd cycles. But a 4-cycle in the dual graph is
geometrically a parallelogram. The interior angles of the parallelogram are 2πk/n and
2πk′/n with k and k′ integers, and 2πk/n + 2πk′/n = π. So n = 2(k + k′) and n is even.
So if n is odd, there’s no 4-cycle either and the girth is at least 6.
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The dual graph is also an embedded planar graph so it makes sense to talk about
faces. We can compute bounds on the average interior angle of a face in two different
ways. By the lower bound on girth, the average angle is asymptotically at least 2π/3.
But by the lower bound on vertex degree the average angle is asymptotically at most
π/2, a contradiction.

The situation for (n, 5)-scatters is similar. If X is an (n, 5)-scatter then 3-cycles in
GX are equilateral triangles so if GX has any triangles then 6|n. Otherwise the girth is
at least 4. So the girth gives an asymptotic lower bound on average face angle of π/2
and degree gives an asymptotic upper bound of 2π/5.

How is this kind of asymptotic argument justified? Our tilings are nice in the sense
that there aren’t any singular points where tiles accumulate or any other bad behavior.
More precisely, our tilings are normal in the sense of Chapter 3 of [Grun] since the tiles are
topological disks, the intersection of every two is connected, and the tiles are uniformly
bounded in size.

5 Non-crystallized scatters
We prove first Lemma 3.2. If X is any (n, k+1)-scatter we can carefully delete tiles from
X and still know that what we’re left with an (n, k)-scatter. In particular, if S is any
set of tiles in X such that no pair of elements in S has a common neighbor in X, then
X − S is an (n, k)-scatter.

Suppose by way of contradiction that U is an infinite (n, k)-unavoidable shape. How
many distinct congruent copies of U appear in X? At most countably many, so let
T = {t1, t2, . . .} be an ordered list of all of them. Let s1 be any tile in t1, and for
i = 2, 3, . . . let si be any tile in ti such that si doesn’t have any neighbors in common
with sj for any j with j < i. Such a choice always exists since ti is by assumption
unbounded. Write S = {s1, s2, . . .}. Then X − S is an (n, k)-scatter in which no copy of
U appears, a contradiction.

To prove Lemma 3.3 we need only construct enough scatters, and it turns out that
a few periodic examples are already enough. To show (9, 3)-scatters aren’t crystallized,
the three scatters in Figure 4 suffice, just by considering angles around a vertex in the
dual graph. Similarly, to check that (16, 4)-scatters aren’t crystallized we only need the
three periodic examples in Figure 5. The same kind of argument works for larger (n, 3)
and (n, 4); all that’s happening is that the angles at a vertex are too flexible for things
to crystallize when n is large.

6 Crystallized scatters
For some choices of parameter there’s a unique infinite scatter, namely (3, 3), (4, 4), (8, 4),
and (6m, 6). So we’re only concerned with four cases, when (n, k)=(5, 3), (7, 3), (10, 4),
and (14, 4).
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Figure 4: (9,3)-scatters.

Figure 5: (16,4)-scatters.

Figure 6: (5, 3)-unavoidable.
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Figure 7: Proving that the shape in Figure 6 is unavoidable.

Figure 8: The middle and right shapes prove the shape on the left is unavoidable.

The unbounded shape P in Figure 6 is (5, 3)-unavoidable, as follows. Let X be any
(5, 3)-scatter. If the shaded shape on the left in Figure 7 occurs anywhere, the infinite
cone is forced by the minimal neighbor requirement, and the cone contains copies of P .
If the shaded shape in the middle occurs, then the three row shape to the right is forced,
forcing P again. Finally, suppose neither shaded shape occurs. Then one easily checks
by exhaustion that X is isomorphic to the periodic scatter on the right, and P can be
found along the diagonal.

Similarly, the unbounded shape on the left in Figure 8 is (7,3)-unavoidable. Any
scatter avoiding the shaded initial tiles in the middle is equivalent to the periodic (7, 3)-
scatter on the right.

Finally, the unbounded shapes in Figure 9 and 10 are (10, 4)- and (14, 4)-unavoidable
respectively. The proofs are as above. Any scatter avoiding the shaded initial tiles in the
middle is equivalent to the periodic scatter on the right. In either case, the half infinite
strip illustrated on the left is forced.

Figure 9: The shape on the left is (10, 4)-unavoidable.

6



Figure 10: The shape on the left is (14, 4)-unavoidable.

Figure 11: A (5, 2)-scatter and two (5, 3)-scatters made with translations.

7 Entropy
The topological entropy of the space of (n, k)-scatters X is defined as the exponential
growth in complexity [Robs]:

h(X) = N lim
r→∞

1

r2
log(c(r)),

where the complexity c(r) is the number of different equivalent classes of a ball Br of radius
r, and N is a constant normalizing factor. We’re only concerned here with whether the
entropy is zero or positive, so the exact value of N isn’t important.

Two tilings are equivalent if they agree after a small shift on a large disk. More
precisely, we can take representatives of an equivalence class to have the first tile’s position
fixed and compute complexity by counting the number of ways to extend this single tile
to an (n, k)-scatter intersected with a disk Br.

There’s uncountably many noncongruent (5, 3)-scatters just by gluing together copies
of the infinite strip in Figure 11, but besides those built out of strips like this and
two aperiodic examples (Figure 12) we don’t know any others. So if we assume these
are the only ones, then log (c(r)) = O(r) and h(X) = 0. Similar comments hold for
(n, k) = (7, 3), (10, 4), and (14, 4), where the only examples we know are periodic.

It’s easy to prove that h(X) > 0 for (4, 3)-scatters with the following kind of argument.
Divide a large 3n by 3n square into 3 by 3 squares. The center square of each of these
can either be included in a (4, 3)-scatter or not, independently, since none of them have
common neighbors, so log (c(r)) = Ω(r2) and h(X) > 0. Just by imitating the proof of
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Figure 12: Crystallized scatters with finite symmetry groups.

Lemma 3.2 it seems true more generally that if (n, k+1)-scatters exist, then (n, k)-scatters
exhibit positive entropy. It’s still possible that h(X) = 0 for some non-crystallized cases,
such as (9, 3) and (16, 4), but in any case we expect that crystallization implies zero
entropy.

8 Open problems and generalizations
Several questions naturally arise. It’s not clear what happens in the hyperbolic plane for
example. Right now though, we don’t know of any nontrivial cases of crystallization in
this setting so it’s not clear if this question is interesting.

Alternately, one might study scatters in higher dimensions with polytopal tiles. De-
ciding what happens with the dodecahedron and icosahedron in R3, for example, would
be interesting since the pentagons are the most interesting examples in the two dimen-
sional case. (For the ambitious, the 120-cell and 600-cell in R4.) Can questions like this
be easily resolved with a computer program?

It seems crystallized scatters always exhibit nontrivial symmetry groups. At least
every example we know so far does, but one should be careful since there are crystal-
lized scatters with no translations, Figure 12. Both exhibit forbidden 5-fold rotational
symmetry [Stei]. Are these the only aperiodic crystallized scatters? An example of the
connection between rigidity in packing problems and symmetry is the following [Radi].

Theorem 8.1. If there’s only one optimally dense packing of Euclidean space, up to
congruence, by congruent copies of bodies from some fixed, finite collection, then that
packing must have a symmetry group with compact fundamental domain.

Finally, is there always some finite set of maximal unavoidable shapes S (possibly
unbounded themselves), meaning that a shape is unavoidable if and only if it’s a subshape
of some shape s ∈ S? From what we’ve computed here it’s easy to check that this is true
in the plane whether or not the scatters crystallize. But it might be nice to know this more
generally as a suggestion that the set of unavoidable shapes is never too complicated.
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