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Abstract. A hypertree, or Q-acyclic complex, is a higher-dimensional analogue of a tree.
We study random 2-dimensional hypertrees according to the determinantal measure sug-
gested by Lyons. We are especially interested in their topological and geometric properties.
We show that with high probability, a random 2-dimensional hypertree T is aspherical,
i.e. that it has a contractible universal cover. We also show that with high probability the
fundamental group π1(T ) is hyperbolic and has cohomological dimension 2.

1. Introduction

The following enumerative formula is well known.

Theorem 1. The number of spanning trees on n vertices is

nn−2.

The trees are understood to be labelled, i.e. on vertex set [n] := {1,2, . . . ,n}, and not
merely up to isomorphism type. The example n = 4 is illustrated in Figure 1. There are
only 2 trees on 4 vertices up to isomorphism, but there are 16 labelled trees.

Apparently, Theorem 1 was first proved by Borchardt in 1860 [8]. Cayley extended the
statement in 1889 [10], and it is often known as “Cayley’s formula.” Several proofs can be
found in Aigner and Ziegler’s book [1]. Aigner and Ziegler write that the “most beautiful
proof of all” was given by Avron and Dershowitz [5], based on ideas of Pitman.

The definition of a tree is that it is connected and has no cycles. Equivalently, a graph
G is a tree if it has no nontrivial homology, i.e. if H̃0(G) = H1(G) = 0. Kalai suggested the
topological notion of Q-acyclic simplicial complexes as higher-dimensional analogues of
trees in [23]. Q-acyclic complexes are sometimes also called hypertrees. Here, we use the
term 2-tree for a 2-dimensional hypertree. The precise definition is as follows.

Definition 2. We say that a finite 2-dimensional simplicial complex S is a 2-tree if it has
all of the following properties.

• S has complete 1-skeleton, i.e. if the underlying graph is a complete graph.
• H1(S;Q) = H2(S;Q) = 0.

Kalai proved a general formula for a weighted enumeration of Q-acyclic complexes,
which specializes to the following in the case of 2-trees.
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Figure 1. The 42 = 16 trees on 4 vertices.
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Figure 2. The smallest topologically nontrivial 2-tree is the 6-vertex
projective plane.

Theorem 3 (Kalai [23]). ∑
S∈T(n)

|H1(S)|2 = n(
n−2

2 )

Here the notation |G | denotes the order of the group G, and T(n) denotes the set of
2-trees on n vertices. Since H1(S;Q) = 0 by definition, by the universal coefficient theorem
we have that H1(S) is a finite group for every S ∈ T (n).

The smallest topologically nontrivial example of a 2-tree is the 6-vertex projective plane,
illustrated in Figure 2. A topological space is said to be aspherical if it has a contractible
universal cover. The 6-vertex projective plane is a good example to show that 2-trees are
not always aspherical.

More general enumerative formulas were given by Duval, Klivans, and Martin [16].
These generalizations again are weighted enumeration formulas. In fact, currently for
d ≥ 2 establishing the unweighted enumeration for d-trees is an open problem. The best
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upper and lower bounds to date for unweighted enumeration of hypertrees are given by
Linial and Peled in [27].

Kalai’s enumeration suggests a natural probability distribution on 2-trees, first studied
by Lyons [30]. Define a probability measure on T(n) by setting the probability of every
2-tree T proportional to |H1(T)|2. Equivalently, by Kalai’s formula, the probability of any
particular 2-tree T is given by

P(T) =
|H1(T)|2

n(
n−2

2 )
.

This is the distribution we study for the rest of this paper. This distribution is in many
ways nicer than the uniform distribution. The most important property of this probability
distribution for our applications is that it satisfies negative correlation. This is a result of
Lyons [30] that we review in Section 2.

We write T ∼ T(n) to denote a 2-tree chosen according to the determinantal measure
described above. For any property Pn, we say that property Pn occurs with high probability
(w.h.p.) if P[T ∈ Pn] → 1 as n → ∞. We are mostly interested in topological and
geometric properties of T . Our main results are that, w.h.p., T is aspherical and that π1(T)
is a hyperbolic group of cohomological dimension 2. The proofs depend on combining
ideas from probability, topology, and geometric group theory.

We note that many other models of random simplicial complex have been studied— see,
for example, the survey in Chapter 22 of [18]. The closest model to what we study here is the
Linial–Meshulam model Y ∼ Y (n, p) introduced in [26], which is the “face-independent”
model, a higher-dimensional analogue of the Erdős–Rényi edge-independent random graph
G(n, p). In fact, negative correlation allows us to relate random 2-trees directly withY (n, p).
Babson, Hoffman, and Kahle showed the fundamental group π1(Y ) is hyperbolic with high
probability, and Costa and Farber showed that Y is “almost” aspherical, and they also
showed that π1(Y ) has cohomological dimension 2.

Besides a newmodel of random simplicial complex, this is also a 2-dimensional analogue
of the uniform spanning tree on a complete graph. Uniform spanning trees have been studied
extensively, in part for their intimate connections to loop-erased random walks and also to
electrical currents. See, for example, Chapter 4 of Lyons and Peres’s book [31].

The remainder of the paper is organized as follows. In Section 2, we review definitions
of “determinantal measures” and negative correlation. In Section 3, we show that w.h.p. the
fundamental group of the random 2-tree π1(T) is a hyperbolic group w.h.p. In Section 4 we
show that w.h.p. H1(T) , 0 and in Section 5 we show that w.h.p. π1(T) is cohomologically
and geometrically 2-dimensional. In Section 6, we suggest a few questions for future study.

2. Negative correlation

We first review the definitions of determinantal measure and the connection to negative
correlation. In particular, we briefly overview the work of Lyons [29, 30] which is essential
for our results. In [29], Lyons defines a determinantal probability measure as follows.

Definition 4. Given a finite set E , a probability measure µ on E is said to be a determinantal
probability measure if there exists a matrix M so that for all S ⊆ E , the probability that a
subset T sampled by µ contains S as a subset is given by det(MS,S), i.e. the determinant of
the submatrix of M whose rows and columns are indexed by S.

In [30], Lyons shows that the torsion-squared distribution on 2-trees we consider here is
a determinantal measure. A key fact about determinantal measure discussed in [29, 30] is
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that they satisfy negative association. For our purposes here we don’t need the full strength
of negative association, but only negative correlation of triangles in T ∼ T(n).

We will often wish to bound the probability that a determinantal-measure sampled 2-tree
contains some particular, finite subcomplex. In our case, given n, the set E in the definition
of a determinantal probability measure is the set of all

(n
3
)
triangles on n vertices. In

fact we may regard the triangles of the simplex on n vertices by their boundary vectors
in Q(

n
2); the elements of T(n) are those maximal sets of linearly independent vectors.

The determinantal measure is therefore a distribution on bases of a matroid. It is within
this framework that Lyons shows that the torsion-squared distribution is a determinantal
measure. While we don’t explicitly describe the matrix M here, in Section 2 of [30]
it is described as an |E | × |E | matrix given by an orthogonal projection. In particular
M is positive semi-definite. Therefore by Hadamard’s inequality and the definition of a
determinantal measure, we have for any fixed set of triangles σ1, ...,σk of the simplex on n
vertices, the following well-known negative correlation for determinantal measures:

Pr({σ1, σ2, ....,σk} ⊆ T) ≤ Pr(σ1 ∈ T)Pr(σ2 ∈ T) · · · Pr(σk ∈ T)

By Euler characteristic, any 2-tree contains exactly
(n−1

2
)
triangles, so we have by

symmetry that under the torsion-squared distribution the probability that a random 2-tree
contains any particular face is (n−1

2
)(n

3
) = 3

n
.

Thus, for a fixed (labeled) subcomplex K given by triangles σ1, ...,σk , we have by negative
correlation that the probability thatT sampled from the torsion-squared distribution contains
K as a subcomplex is at most (3/n)k .

In contrast to the determinantal measure, the uniform measure on 2-trees need not have
negatively correlated faces. This can be seen already for 2-trees on 6 vertices. This is
discussed in [22], and we review the discussion as follows. There are 46620 2-trees on
vertex set {1, ...,6}. By Euler characteristic any 2-tree on 6 vertices contains

(5
2
)
= 10

triangles out of a total of
(6
3
)
= 20 possible triangles. Therefore, by symmetry we have

that the probability that a uniform random 2-tree contains any given triangle is 1/2. On the
other hand, 11664 of the 2-trees contain both the triangle [1,2,3] and the triangle [4,5,6]
by exhaustive enumeration on a computer. However,

11664/46620 ≈ 0.2502 > 1/4.

Changing to the torsion-squared distribution resolves this in the case n = 6 because 12 of
the 2-trees on 6 vertices are labeled triangulations of the projective plane. None of these
contain both [1,2,3] and [4,5,6]. Sampling by torsion-squared counts these 12 complexes
each 4 times and gives that the probability a 2-tree contains both [1,2,3] and [4,5,6] is
11664/46656 = 1/4.

3. Hyperbolicity

We show in this section that w.h.p. π1(T) is hyperbolic in the sense of Gromov [19]. The
proof is based on the main result in [6]—indeed, we will use a key lemma from the paper
as our main tool. We first review a few key definitions and notions related to hyperbolicity.

Let Cr denote a cycle of length r . For a simplicial complex X , a loop is a simplicial map
γ : Cr → X . In this case, we define the length of γ by L(γ) = r .
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Figure 3. An example of a filling. Here γ is the map which takes the
cycle C6 twice around the boundary of the 2-simplex X . By definition,
the area of this filling is 2.

Figure 4. The mapping cylinder for the map b in Figure 3. Note that
the mapping cylinder has a cell structure where every face is either a
triangle or a quadrilateral. Triangles correspond to triangles in D, and
quadrilaterals correspond to edges in Cr .

We say that (Cr
b
−→ D

π
−→ X) is a filling of γ if D is a simplicial complex, b and π are

simplicial maps such that γ = πb, and the mapping cylinder of b is homeomorphic to a
2-dimensional disk. See Figures 3 and 4 for an example.

Let f2(D) denote the number of 2-dimensional faces in D. We define the area of the
filling to be the number of faces in f2(D). For a null-homotopic loop γ, we say that the
area of γ, denoted A(γ), is the minimal area over all fillings.

Now, we are ready for a definition of hyperbolic group.

Definition 5. Let ∆ be a finite simplicial complex. We say that the fundamental group
π1(∆) is hyperbolic if there exists a constant K > 0 such that

A(γ) ≤ KL(γ)

for every null-homotopic loop γ.

It is not obvious from this definition, but this is an invariant property of the fundamental
group π1(∆) which does not depend on the choice of simplicial complex ∆. This definition
in terms of a linear isoperimetric inequality is similar to the first definition given by Gromov
in [19]. Satisfying such an inequality is equivalent to a Cayley graph of the group being
δ-hyperbolic, or the group being word hyperbolic.

Our main tool in this section is the following, which appears in [6].

Theorem 6 (Babson–Hoffman–Kahle, Theorem 1.9 in [6]). Let ε > 0, and suppose that ∆
is a finite simplicial complex such that for every subcomplex S ⊆ ∆, we have that

f2(S)
f0(S)

≤ 2 − ε .
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Then ∆ satisfies a linear isoperimetric inequality. Namely

A(γ) ≤ λ L(γ)

for every null-homotopic loop γ. Here λ = λ(ε) is a constant which only depends on ε .

We also require the following, which allows us to pass from local to global isoperimetric
inequalities. This particular statement for simplicial complexes and its proof also appear in
[6], and it is based on earlier work of Gromov [19] and Papasoglu [33].

Theorem 7. Suppose that ρ ≥ 1 and X is a finite simplicial complex for which every
null-homotopic loop γ : Cr → X with A(γ) ≤ 443ρ2 satisfies A(γ) ≤ ρL(γ). Then every
null-homotopic loop γ : Cr → X satisfies A(γ) ≤ 44ρL(γ).

In other words, if X satisfies a linear isoperimetric inequality locally, then it satisfies
one globally, although perhaps with a worse isoperimetric constant. So it suffices to check
hyperbolicity on balls of finite radius. We are now ready to prove the main result of the
section.

Theorem 8. SupposeT ∼ T(n) is a random 2-tree according to the determinantal measure.
Then w.h.p. π1(T) is a hyperbolic group.

Proof of Theorem 8. With foresight into the calculations to come, let ε = 1/2, and let
λ = λ(ε) be the constant guaranteed by Theorem 6. So for every finite simplicial complex
∆ satisfying the condition of Theorem 6, and every null-homotopic loop γ : Cr → ∆, we
have

A(γ) ≤ λL(λ).

Now, let C be chosen such that

C ≥ max{443λ2,443},

and then let C ′ be chosen such that

C ′ ≥
C
2

(
1 +

1
λ

)
+ 1.

We emphasize that C and C ′ are chosen to be sufficiently large, but are still fixed as n→∞.
First, we check that w.h.p. for every subcomplex ∆ ⊂ T on at most C ′ vertices, we have

f2(∆)
f0(∆)

<
3
2
.

Note first that if there exists a subcomplex ∆ ⊂ T with f2(∆) ≥ (3/2) f0(∆), then there exists
a subcomplex ∆′ ⊂ T with f2(∆′) = d(3/2) f0(∆′)e. Indeed, ∆′ can be obtained by deleting
one face from ∆ at a time until equality is achieved.

A union bound, together with negative correlation, gives that

P [∃∆ ⊂ T with f2(∆) > (3/2) f0(∆)] ≤
C′∑
k=1

(
n
k

) ( (k
3
)

d(3/2)ke

) (
3
n

) d(3/2)k e
.

The sum tends to zero as n tends to infinity, since C ′ is fixed so there are only a bounded
number of summands, and every summand tends to zero.

By Theorem 6, we have that w.h.p. every subcomplex ∆ ⊂ T on at most C ′ vertices
satisfies the linear isoperimetric inequality

A(γ) ≤ λL(γ).
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Next, we check that this implies that

A(γ) ≤ λ L(γ)

for every null-homotopic loop γ in T with A(γ) ≤ C.
Suppose that γ is a null-homotopic loop with A(γ) ≤ C. If L(γ) > C/λ, then since

A(γ) ≤ C it is immediate that A(γ) ≤ λL(γ).
So suppose instead that L(γ) ≤ C/λ. In this case, A(γ) and L(γ) are both bounded.

It follows that if (Cr
b
−→ D

π
−→ T) is a filling of γ, then the number of vertices f0(D) is

bounded as well. Indeed, let v, e, and f denote the number of vertices, edges, and faces
in the mapping cylinder of b. Since we have a bijection between vertices of the mapping
cylinder, and the disjoint union of vertices in Cr and vertices in D, we have

v = L(γ) + f0(D).

By double counting edge-face incident pairs have 2e = 5L + 3A. or

e = (5/2)L + (3/2)A.

Finally, we have

f = L + A,

since every face of the mapping cylinder is either a quadrilateral face (corresponding to
a single edge of Cr ) or a triangle face of the simplicial complex D. Since the mapping
cylinder is a topological disk, we have

v − e + f = 1.

Putting it all together gives that f0(D) = A(γ)/2 + L(γ)/2 + 1.
In the case we are interested in, we have

f0(D) = A(γ)/2 + L(γ)/2 + 1

≤
C
2
+

C
2λ
+ 1

=
C
2

(
1 +

1
λ

)
+ 1

≤ C ′,

by choice of C ′. Then the image of the map π : D → T lies in subcomplex ∆ ⊂ T on at
most C ′ vertices, so by the above A(γ) ≤ λL(γ), as desired.

Let ρ = max{1, λ}. Then ρ ≥ 1 andwe have that A(γ) ≤ ρL(γ) for every null-homotopic
loop γ with A(γ) ≤ C. Theorem 7 gives that

A(γ) ≤ 44ρL(γ)

for all null-homotopic γ in T . Setting K = 44ρ, we have the desired result.
�

We have shown that w.h.p. π1(T) is hyperbolic. The definition of hyperbolic group does
not preclude the possibility that the group π1(T) is trivial. In the next section, however, we
will prove that π1(T) , 0 w.h.p. by showing that H1(T) is nontrivial.
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4. Nontriviality and expected order of torsion

In this section, we give upper bounds on the probability that homology H1(T) is trivial
and lower bounds on its expected order. It is convenient to introduce a little notation for
asymptotics.

We write f = O(g) if there exists a constant C > 0 such that f (n) ≤ Cg(n) for all
sufficiently large n. We write f = Ω(g) if there exists a constant C ′ > 0 such that
f (n) ≥ C ′g(n) for all sufficiently large n. Finally, we write f = Θ(g) if there exist constants
C ≥ C ′ > 0 such that C ′g(n) ≤ f (n) ≤ Cg(n) for all sufficiently large n.

We will make use of the following observation of Kalai [23]. Let N(n) denote the
number of 2-trees on n vertices.

Lemma 9. For every n ≥ 1, we have

N(n) ≤ (en/3)(
n−1

2 ).

We include a short proof for the sake of completeness.

Proof. Every 2-tree T on n vertices has
(n
2
)
edges. The Betti numbers are β0 = 1 and

β1 = β2 = 0, by definition. By Euler characteristic, T has
(n−1

2
)

2-dimensional faces. So
the total number of 2-trees is at most( (n

3
)(n−1

2
) ) ≤ (

e
(n
3
)(n−1

2
) )(n−1

2 )

=
( en

3

)(n−1
2 )
,

by the standard bound
(N
k

)
≤

(
eN
k

)k . �

Theorem 10. LetT ∈ T (n). With probability at least 1−exp
(
−Ω(n2)

)
, we have H1(T) , 0.

Proof. By definition of the determinantal measure, the probability that H1(T) = 0 is given
by

P [H1(T) = 0] =
# of 2-trees T ∈ T (n) such that H1(T) = 0

n(
n−2

2 )

≤
total # of 2-trees T ∈ T (n)

n(
n−2

2 )

=
N(n)

n(
n−2

2 )

≤

( en
3

)(n−1
2 ) 1

n(
n−2

2 )
(by Lemma 9)

=
( e
3

)(n−1
2 )

nn−2.

= exp
[(

n − 1
2

)
log(e/3) + (n − 2) log n

]
= exp

(
−Ω(n2)

)
.

�

Next, we prove the following.
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Theorem 11. We have that

E [|H1(T)|] ≥

(√
3
e

)(n−2
2 )

(√
3
en

)n−2

.

So in particular, we have that

E[|H1(T)|] = exp
(
Θ

(
n2

))
.

We will use the following inequality.

Lemma 12. Let x1, x2, . . . xk ≥ 0 be non-negative real numbers.
Then it follows that

k∑
i=1

x3
i ≥

1
√

k

(
k∑
i=1

x2
i

)3/2

.

Proof of Lemma 12. Jensen’s inequality tells us that for a convex function φ, numbers in
its domain y1, y2, . . . , yk , and positive weights a1,a2, . . . ,ak , we have

φ

(∑k
i=1 aiyi∑k
i=1 ai

)
≤

∑k
i=1 aiφ(yi)∑k

i=1 ai
.

Set ai = 1 and yi = x2
i for i = 1,2, . . . k, and let φ(x) = x3/2. We note that φ(x) is convex

on the domain {x | x ≥ 0}. �

Given the lemma, we prove Theorem 11.

Proof of Theorem 11. By definition of expectation, we have that

E [|H1(T)|] =
∑

T ∈T(n)

P[T]|H1(T)|

=
∑

T ∈T(n)

|H1(T)|2

n(
n−2

2 )
|H1(T)|

=
1

n(
n−2

2 )

∑
T ∈T(n)

|H1(T)|3

≥
n(3/2)(

n−2
2 )

n(
n−2

2 ) (en/3)(1/2)(
n−1

2 )
.
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This last step is by applying Lemmas 9 and 12, together with Theorem 3. Simplifying, we
have that

E [|H1(T)|] ≥

(√
3
e

)(n−2
2 )

(√
3
en

)n−2

= exp
[(

n − 2
2

)
log(

√
3/e) + (n − 2) log(

√
3/en)

]
= exp

[
1
2

n2 log(
√

3/e) −O (n log n)
]

= exp
[
(1 − o(1)) n2 log((3/e)1/4)

]
=

(
(3/e)1/4−o(1)

)n2

= exp
(
Ω(n2)

)
.

This is on the scale of the largest torsion possible, in the sense that for every simplicial
complex ∆ on n vertices, we have that the order of the torsion part of first homology is
bounded by

|H1(∆)torsion | ≤
√

3(
n−1

2 )
≤

(
31/4 − o(1)

)n2

= exp
(
O(n2)

)
.

This upper bound on torsion appears in many places, including [34] and [20], and perhaps
first appeared in Kalai’s weighted enumeration of hypertrees [23].

Since E [|H1(T)|] = exp
(
Ω(n2)

)
and E [|H1(T)|] = exp

(
O(n2)

)
, we have E [|H1(T)|] =

exp
(
Θ(n2)

)
, as desired.

�

5. T is aspherical and π1(T) has cohomological dimension 2

The main result of this section is the following.

Theorem 13. Let T ∼ T(n). Then, w.h.p. T is aspherical.

Our proof will use the following theorem of Costa and Farber [14]. It is worth noting that
this is a purely topological and combinatorial statement, and does not involve probability.

Theorem 14 (Costa–Farber, Theorem 11 of [14]). There exists a finite list L of compact
2-dimensional simplicial complexes with the following properties:

(1) The boundary of the tetrahedron is in L.
(2) For any S ∈ L other than the boundary of the tetrahedron, there exists a subcomplex

S′ ⊆ S with f0(S′)/ f2(S′) ≤ 46/47
(3) IfY does not contain any subcomplex isomorphic to any complex in the list L, then

it is aspherical.

We have modified the statement slightly from its original form. In [14], Costa and Farber
show that for a certain regime of p, Y (n, p) is asphericable, meaning nearly aspherical.
More precisely, they say that a complex is asphericable if it is aspherical after removing a
single face from every embedded tetrahedron boundary. They give a sufficient condition for
a complex to be asphericable which is satisfied w.h.p. for the random 2-complexY ∼ Y (n, p)
w.h.p. Here we simply added the tetrahedron boundary to the set L, as we already know
that a 2-tree T cannot contain tetrahedron boundaries since H2(T ;Q) = 0.
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Proof of Theorem 13. Take L to be the finite list of complexes in Theorem 14. We show
that with high probability T ∼ T(n) contains no subcomplex in L. We already know
that T cannot contain the boundary of a tetrahedron; for any other S ∈ L, we bound the
probability that a determinantal-measure random 2-tree contains S. For S ∈ L, different
from the tetrahedron boundary, take S′ to be a subcomplex of S satisfying condition (2) of
Theorem 14 and let v denote f0(S′), then the probability that T ∼ T(n) contains S is at most
the probability that it contains S′. By negative correlation the probability that T contains
S′ is at most (

n
v

)
v!

(
3
n

)47v/46
.

Indeed to embed S′ in T we have to choose the v vertices and then we have |Aut(S′)| ≤ v!
ways to choose a copy of S′ on the selected vertex set. Now by negative correlation the
probability that every face of the selected copy of S′ appears in T is at most the product of
the probability that each face of S′ appears, thus it is at most (3/n) f (S′) ≤ (3/n)47v/46. As
v is fixed and at least one the probability that T contains S′ as an embedded subcomplex
is O(n−1/46). By a union bound over the finite list L, the probability that T contains
any member of L is O(n−1/46) = o(1). Thus by Theorem 14, with probability at least
1 −O(n−1/46), T ∼ T(n) is aspherical. �

For a group G, let cdR(G) denote the cohomological dimension of G with respect to
coefficient ring R. We have the following immediate consequence of Theorem 13.

Theorem 15. Let T ∼ T(n). Then w.h.p. cdZ (π1(T)) = 2.

Proof. In Section 4, we saw that w.h.p. H1(T) is a nontrivial finite group. Since H1(T) is
the abelianization of π1(T), it follows immediately that π1(T) is not a free group. By the
Stallings–Swan Theorem [35, 36], we have cdZ (π1(T)) ≥ 2.

On the other hand, as T is aspherical, T is itself a 2-dimensional BG for G = π1(T), so
cdZ (π1(T)) ≤ 2. �

This proof also shows that the geometric dimension of π1(T) is 2, so the Eilenberg–Ganea
conjecture holds w.h.p. for this model.

For comparison with earlier work on fundamental groups of random simplicial com-
plexes, we note that in the multi-parameter generalization of the Linial–Meshulam model,
Costa and Farber showed that the fundamental group sometimes, depending on the probabil-
ity parameters, has cohomological dimension 2, but sometimes has 2-torsion and therefore
infinite cohomological dimension [13].

6. Questions

The random 2-trees studied here seem to be natural model in stochastic topology. We
suggest a few more questions for further study.

• Can one de-randomize, or give interesting explicit examples? If cdZ (π1(T)) =
2, then π1(T) must be infinite. Even though our results show that almost all hyper-
trees T have infinite fundamental group π1(T), at the moment we do not have any
explicit examples.

• Does π1(T) have Kazhdan’s Property (T)?A group is said to have Property (T) if
the trivial representation is an isolated point in the unitary dual equipped with the
Fell topology. This is an important property in representation theory, geometric
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group theory, ergodic theory, and the theory of expander graphs. See the mono-
graph [7] for a comprehensive introduction. We conjecture that for T ∼ T(n),
w.h.p. π1(T) has Property (T). One motivation for the conjecture is that in [21],
it is shown that in the stochastic process version of the Linial–Meshulam random
2-complex, as soon as the complex Y is pure 2-dimensional, π1(Y ) has Property
(T). In general, it would be interesting to know about “high-dimensional” expander
properties of random 2-trees. See Lubotzky’s 2018 ICM talk for an overview of
high-dimensional expanders [28].

• Is H1(T) Cohen–Lenstra distributed? Cohen–Lenstra heuristics, first arising
in number-theoretic settings [12], are a natural model for random finite abeliean
groups. These heuristics now appear in several contexts, including cokernels of
random matrices and random graph Laplacians. See, for example, [11, 17, 24, 25,
32, 37]. In [22], Kahle, Lutz, Newman, and Parsons studied the uniform measure
on random 2-trees, and examined the random finite abelian groups that appeared as
the first homology group. There is strong experimental evidence for the conjecture
that for any fixed prime p, the Sylow p-subgroup of the first homology group
of a uniform random 2-tree is distributed according to a probability distribution
assigning probability inversely proportional to |Aut(G)| to each abelian p-group
G. Equivalently, for a given prime p and abelian p-group H, the probability that
the Sylow p-subgroup of H1(T) is isomorphic to H is given by the formula∏∞

k=1
(
1 − p−k

)
|Aut(H)|

We expect this same limiting probability holds, even if the 2-trees are sampled
by the determinantal measure. One can sample a 2-tree fairly quickly with with
the Metropolis–Hastings algorithm, and preliminary experiments support the con-
jecture.

• Is there a scaling limit? The random 2-tree is a 2-dimensional analogue of the
uniform spanning tree (UST) on the complete graph on n vertices. The UST is
known to have a scaling limit, where a suitably rescaledUST converges to a limiting
distribution as n→∞. This limit was described by Aldous in [2, 3, 4], who called
it the “continuum random tree”, and it has been studied extensively since then. An
illustration of a continuum random tree appears in Figure 5. Is there a scaling limit
for the random 2-tree?
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